
Rule-based Protein Term Identification with
Help from Automatic Species Tagging

Xinglong Wang

School of Informatics
University of Edinburgh

2 Buccleuch Place
Edinburgh EH8 9LW, Scotland

xwang@inf.ed.ac.uk

Abstract. In biomedical articles, terms often refer to different protein
entities. For example, an arbitrary occurrence of term p53 might denote
thousands of proteins across a number of species. A human annotator is
able to resolve this ambiguity relatively easily, by looking at its context
and if necessary, by searching an appropriate protein database. How-
ever, this phenomenon may cause much trouble to a text mining system,
which does not understand human languages and hence can not identify
the correct protein that the term refers to. In this paper, we present
a Term Identification system which automatically assigns unique iden-
tifiers, as found in a protein database, to ambiguous protein mentions
in texts. Unlike other solutions described in literature, which only work
on gene/protein mentions on a specific model organism, our system is
able to tackle protein mentions across many species, by integrating a
machine-learning based species tagger. We have compared the perfor-
mance of our automatic system to that of human annotators, with very
promising results.

1 Introduction

Biomedical literature provide a wealth of information on genes, proteins and
their interactions. To make this vast quantity of data manageable to biologists
and to utilise them in conjunction with bioinformatics methods, it is desirable
to automatically organise the free text information into machine-readable, well-
defined form. A growing body of work has been devoted to recognition of protein
and gene names, and to extraction of their interactions. In this paper, we report
our work on another fundamental task of identification of “ambiguous” mentions
of biological entities in documents, which we believe has not been adequately
addressed in the literature.

We call the task of grounding a biological term in text to a specific identifier
in a referent database as Term Identification (ti) [1]. ti is crucial for the auto-
mated processing of the biomedical literature [2, 3]. For example, a system that
extracts protein-protein interactions would ideally collapse interactions involving
the same proteins, which might appear in different word forms in articles. This



paper describes our system for identification of protein entities.1 We summarise
the sources of ambiguity and the corresponding disambiguation tasks that need
to be carried out as follows:2

1. Term Normalisation [4] A protein term may appear in text in various forms,
such as orthographic variants (e.g., IL-5 and IL5 ), acronyms or abbreviations (e.g.,
IL5 for Interleukin-5 ), etc. Term normalisation is to “normalise” such variants to
their canonical form, as recorded in a protein database.

2. Term Disambiguation [1] A protein term may refer to different protein entities
across different model organisms (e.g., IL5 can be IL5 Homo sapiens or IL5 Rattus
norvegicus). Also, it may refer to different protein entities within the same model
organism (e.g., IL-5 for interleukin 5 precursor or interleukin 5 receptor of Homo
sapiens). A term disambiguation module resolves the ambiguity and associates the
term to a unique identifier.

Our ti system addresses both tasks. Specifically, the ti system approaches
the first challenge by a rule-based fuzzy matching algorithm. For the second
task, we studied several solutions and compared their performances. The best
approach utilises a machine learning species-tagger, which was trained on human-
annotated data and then automatically assigns a model organism to a protein
mention. If the mention is still ambiguous, a heuristic rule is applied to resolve the
remaining ambiguity. Experimental results show that our best term identification
system achieved an f1 score that exceeded 85% of the inter-annotator agreement
(iaa).

This paper is organised as follows: Section 2 provides an overview on related
work on ti. Section 3 describes the data and the protein database that we have
worked on. We also explain the evaluation metrics for measuring inner-annotator
agreement and our system. Section 4 details our solutions to term identification
where we tackle both term normalisation and term disambiguation. We empha-
sise one approach that integrates a species tagger to help resolve ambiguity, as
it performed best in our evaluation. We finally draw conclusions and propose
future research directions in Section 5.

2 Related Work

The identification of terminology in the biomedical literature is one of the most
challenging research topics in the last few years both in Natural Language Pro-
cessing and in biomedical research communities. Krauthammer and Nenadic [1]
provides an excellent overview to the task and state-of-the-art solutions to it.
They summarise three main steps to successful identification of terms from lit-
erature: term recognition, term classification and term mapping. As the names
1 Our experiments focus on protein entities, but our techniques should be applicable

to other biological entities such as genes or mrnas.
2 Our ti system is designed for term identification rather than term recognition. We

used a separate Named Entity Recognition system to generate a list of protein men-
tions for our system to identify.



suggest, term recognition “picks up” single or several adjacent words that indi-
cate the presence of domain concepts; term classification categorises the terms
into biomedical classes, such as proteins, genes or mrnas; and term mapping
links terms to well-defined concepts in referent data sources, such as controlled
vocabularies or databases. The first two steps are normally covered by Named
Entity Recognition, which has been relatively better studied. The third step
is essentially term identification, which is arguably more challenging because
it involves resolving language ambiguity, where simple pattern matching and
machine learning approaches are often not adequate.

Chen et al [5] collected gene information from 21 organisms and quantified
naming ambiguities within species, across species, with English words and with
medical terms. Their study shows that intra-species ambiguity in gene names
was negligible at 0.02%, whereas across-species ambiguity was high at 14.2%.
It suggests that resolving species ambiguity is an effective step towards gene
name identification. Fang et al [6] reported their identification system based
on automatically built synonym dictionaries and string matching techniques.
However, their system restricts itself to identification of only human genes.

Recently, the BioCreAtIvE workshop [7] task 1B provided an excellent fo-
rum for research in term identification. Participating systems were required to
produce lists of gene identifiers for occurrences of genes and gene products, in
three model organisms (Yeast, Fly and Mouse), mentioned in sets of biomedical
abstracts. Most systems [8–14] presented in the workshop followed a three-step
procedure of term recognition, approximate search in lexicon and term disam-
biguation. However, they are different in details and a wide range of rule-based
and machine learning techniques were applied.

Note that the BioCreAtIvE task and other previous work are different from
ours in two ways. First, most of them identify gene names, whereas our task
requires protein term identification, which is in general equally important for
biomedical text mining applications. In specific applications such as extraction
of protein-protein interactions, identification of protein names is even more im-
portant. In addition, protein name identification could be more challenging, as
researchers observed that protein names tend to be more ambiguous [15] than
genes, because protein names a) are inclined to contain multiple words than gene
names and b) their naming convention is more diverse.

Second, in the BioCreative 1B task, the gene names to identify were species
specific.3 According to our experience and reports in previous work [5, 8], this
largely reduces their ambiguity and made the task easier. Our term identification
system, on the other hand, tackles protein terms across multiple species, which
is more likely to happen in real world text mining applications, where species of
biological entities are often not explicitly expressed in biomedical articles.

3 Some researchers did use results from species identification as a feature to help
perform species-specific term normalisation (e.g., [8]), although systematical study
on species identification has not been reported.



3 Data and Ontology

Our ti system is a hybrid of rule-based and machine learning techniques, some
of which require a protein database and manually annotated data. We used a
commercial protein ontology, the Cognia Molecular (cm), as our referent protein
database. It is derived from an early version of RefSeq4 and similar to RefSeq,
it comprises of protein records covering many species. The ti system assigns
unique cm identifiers to ambiguous terms in texts.

We then hired a group of biologists and asked them to manually assign cm
ids to mentions of proteins in a collection of 584 biomedical articles taken from
PubMed Central.5 The ti annotation6 involves linking a protein mention in text
to a unique cm id, where the annotators were asked to resolve any lexical am-
biguity that might exist, based on contextual information and cm. They were
also advised to pay attention to the species that a protein mention belongs to
during the manual identification.

When the annotation process finished, we split the annotated data into 3
folds: training data (64%), development test (devtest) data (16%) and blind test
data (20%)7. We analysed the manually annotated training data as follows:

1. Correct normalisation (24.3%): Terms are linked to their unique identifiers in cm.
2. Unknown (1.63%): Identification of these protein mentions could not be deter-

mined, and therefore were not assigned cm identifiers.
3. Not available in the ontology (2.48%): The protein mentions and their species could

be identified but they were not included in cm;
4. Species overriding (68.5%): The annotators recognised the protein names and found

them in cm, but they could not find the correct species for them; in which case
they were advised to assign cm ids of the same proteins but in Homo sapiens to
the mentions and then assign the correct species to it.

5. Experimental proteins but not real proteins (3%) were not normalised.
6. Protein complexes (0.05%) were not normalised.

In the experiments reported in this paper, we only made use of the portion of
the data that were correctly normalised (ie., category (1)), because essentially,
only protein mentions in this portion can be correctly identified with respect to
cm ontology. We noticed that the majority of the data belong to the “species
overriding” category, which might be due to incompleteness of cm.8 It also re-
flects the fact that protein mentions in biomedical articles belong to a wide range
4 See http://www.ncbi.nlm.nih.gov/RefSeq/.
5 See http://www.pubmedcentral.nih.gov/. The collection of papers used were a com-

bination of abstracts and full-length papers.
6 The annotation process was aiming to provide high-quality data not only for ti, but

also for other text mining systems such as Named Entity Recognition and Relation-
ship Extraction.

7 Training data were used to train machine learning systems, which then tune their
parameters on the devtest data. Evaluation was carried out on blind test data, which
were unseen by the machine learn system, and therefore would reflect an unbiased
performance.

8 The cm ontology contains proteins across 22 species.



of species, which further confirms our observation that a species identifier would
be very important for real world text mining systems.

We had 5% of the training data double-annotated for calculation of inter-
annotator agreement (iaa).9 In detail, we arbitrarily took one annotation as gold
standard and the second as system output, and calculated f1 score for the second
annotation.10 The iaa on this task is 69.55%, which we think is reaonable, given
the fact that the iaa on the task of English Word Sense Disambiguation is only
about 67.0% [16], where native speaking annotators were asked to disambiguate
the meaning of uses of common polysemous English words such as interest.11

We measure the performance of ti in the same way with precision, recall and
f1, which are then compared to iaa.

4 Hybrid Approachs to TI

The target of our ti system is to associate a cm id to every mention of a protein
in a document. In general, we approached the target following the two-step
procedure of term normalisation and term disambiguation. We utilise a rule-
based term normaliser which matches protein mentions in text to entries in cm.
If there is a match, then the cm id of the entry is assigned to the mention. Having
multiple matches indicates that the protein mention in question is ambiguous, in
which case the term disambiguation module is invoked. We have experimented
with a few disambiguation methods and the best performing one takes advantage
of a machine-learning-based species tagger and a heuristic rule.

More specifically, our final ti system repeats the following steps until all
protein mentions are identified:

1. Associate candidate identifiers to a protein mention, by performing an approxi-
mate search in cm. If a single candidate is returned, then the protein mention is
monosemous and assign this identifier to it; otherwise, go to Step (2).

2. Identify the species of the protein mention, using an automatic species tagger.
Then compare the predicted species to the species associated with the candidate
identifiers and filter out all identifiers whose species do not match the predicted
one. If there is only one candidate left, assign it to the protein mention; otherwise,
go to Step (3).

3. Apply a heuristic rule to rank the remaining candidate identifiers and assign the
top-ranked one to the protein mention;

The first step (term normalisation) is described in Section 4.1. Steps 2 and
3 together perform term disambiguation and are detailed in Section 4.2. The
same section also describes other disambiguation approaches that we tried but
performed less well.
9 Due to constraints on time and resources, we only had 5% data doubly annotated.

10 f1 score is 2×precision×recall
precision+recall

, where precision is the number of correctly identified
terms divided by the total number of terms identified, and recall is the number of
correctly identified terms divided by the total number of identified terms in the gold
standard dataset.

11 The word interest can be used for the “excitement of feeling” sense, or the “fee paid
for use of money” sense, among others, according to context.



4.1 Assigning Potential CM Identifiers to Protein Mentions

The first step of ti is to assign one or many potential cm identifiers to a protein
mention. It is achieved by looking up the cm ontology and matching the protein
mention in text, to its potential “synonyms” in cm. The cm ids of its synonyms
are then assigned to the protein mention in question, as its candidate identifiers.
Note that this is not a task of exact string matching, because, as we mentioned,
names of proteins occur in articles in a variety of forms, including orthographic
variants, abbreviations, acronyms, etc., which may not be the same as what they
appear to be in cm.

We devised a set of rules for this matching process, based on our observations
and previous work in literature [8]. Rules are divided into two sets. The first
set were used to expand cm ontology: they were applied to every entry and the
generated terms were added to cm. This resulted in an enriched cm with 186, 863
entries, in contrast to the original one with 153, 997 entries. The rules are:

1. Lowercase the item;
2. Remove/Add space between w and x, eg. “TEG 27” ⇒ “TEG27”;
3. Remove/Add hyphen between w and x, eg. “TEG-27” ⇒ “TEG27”;
4. Replace space between w and x with hyphen and vice versa, eg. “TEG 27” ⇒

“TEG-27”;

Where w denotes a token with multiple letters, and x ∈ D ∪L∪ G, where D
are tokens containing digits only, L are tokens containing a single letter only and
G denote the set of English spelling equivalents to Greek letters (eg. alpha, beta,
etc). We can see that this set of rules are employed to capture the orthographic
variants of protein mentions.

The other set of rules are applied to the protein mentions on-the-fly during
term identification. Each rule generates a variant of the mention and then it is
used to query the enriched ontology. The matched entries are then retrieved.
Repeat this process until all the rules are attempted. Note that these rules are
ordered: if there are more-than-one matches, the matches are ranked according
to the order of the rules that generated them. In detail, search the enriched cm
using the following queries:

1. The original term as in text.
2. Lowercased form of the term.
3. The abbreviation/definition form of the term, acquired by searching a list of pairs

of definition and abbreviation/acronym extracted from the document being pro-
cessed, using an algorithm developed by Schwartz and Hearst [17].

4. If a word starts with a lower-case letter, followed by an upper-case letter, remove
the preceding lower-case letter (eg. “hTAK1” ⇒ “TAK1”).

The rationale of the last rule is that the preceding small letter might be added
by the authors to denote species of a protein mention, whereas the ontology may
only contain the original form of the protein without the species indicating prefix.

At the end of this step, for each protein mention appearing in the text, one or
many cm identifiers are retrieved from the expanded cm ontology. If a mention
has only one match, the matching id is assigned to it. Otherwise, proceed to the
next step where term disambiguation is carried out.



4.2 Term Disambiguation

For every protein mention, the term disambiguation module selects a unique
identifier from the pool of candidates generated for this mention in the previous
step. We experimented with four disambiguation systems. We first describe the
approach that performed best in our evaluation and then the alternatives.

Disambiguation with Help from Species Tagging As mentioned, knowing
the host species of a protein mention can largely reduce its ambiguity. Therefore,
we split the disambiguation task into two stages: we first predict its species to re-
duce the “cross-species” ambiguity. If a mention still maps to multiple identifiers,
we resolve the “intra-species” ambiguity using a heuristic rule.

Species tagging can be treated as a text classification problem: a species
tagger attempts to classify the piece of context surrounding a protein mention to
the predefined categories of species, where a context is often represented by a set
of features [18]. Following this idea, we developed two species taggers. The first
one is rule-based. We first compile a list of ‘species’ words, which indicate specific
species. For example, mouse is a ‘species’ word indicating mus musculus, and
Escherichia coli is a ‘species’ term for escherichia coli. Intuitively, if a ‘species’
word appears in nearby context, a protein mention can be assumed to belong to
the species that this ‘species’ word indicates12.

The second species tagger uses the Support Vector Machines (svm) classi-
fier,13 whose idea is to map the set of training data into a higher dimensional
feature space F via a mapping function φ and then construct a separating hyper-
plane with maximum margin. Recall that the protein mentions in our manually
annotated data are linked to their cm ids, which are species specific. Therefore,
they can be used as training data for our svm based species tagger. The fea-
tures we used are contextual word lemmas within a window size of 50 around
the target protein entity, where the lemmas are TFIDF weighted. Table 1 shows
10-fold cross-validation performances of our machine learning and rule-based
species taggers, respectively. The machine learning approach outperformed rule-
based approach by 6.6% on average, and therefore we adopted the svm based
species tagger in our final system.

It is possible that protein names are still ambiguous within the same species,
in which case we use a heuristic rule to resolve the remaining ambiguity. After
species tagging, if a protein mention (p) still maps to multiple candidate identi-
fiers, we use an algorithm to score every occurrence of a candidate identifier and
then the scores for the same identifiers are accumulated. The identifier bearing
the highest accumulated score is then assigned to the protein mention.

More formally, suppose our approximate matching algorithm retrieved n syn-
onyms for a protein mention p, from cm. Let’s denote the set of synonyms as
12 This rarely happens but, when two ‘species’ words appear in equal distance at the

left-hand side and the right-hand side, we assign the protein mention the species
indicated by the ‘species’ word on the left.

13 We use the Weka implementation of this machine-learning algorithm. See:
http://www.cs.waikato.ac.nz/∼ml/weka/



Table 1. Comparison of performance on species-tagging, with machine learning (ML)
or Rule-based (R) species taggers (ST). All figures are in percentage (%).

Experiments 1 2 3 4 5 6 7 8 9 10 avg

ML-ST 41.0 69.5 66.4 53.9 47.8 36.8 48.6 68.8 71.9 55.0 56.0
R-ST 50.2 40.6 64.2 67.4 52.1 22.0 44.8 49.3 35.6 67.5 49.4

S = {s1, s2, ..., si, ...sn}, where each synonym si maps to a set of cm identi-
fiers: IDsi = {idsi1 , idsi2 , ..., idsij , ...idsim}. m is the number of identifiers that a
synonym si has. Therefore, ID =

⋃i=n
i=1 IDsi is the set of candidate identifiers

that p may link to. Note an identifier in ID may occur in multiple IDsi sets.
An occurrence of idi (i ∈ [1, |ID|]) in IDsi

is scored in a way that, if it is the
lowest numbered identifier in IDsi , we assign it a score 3; otherwise we assign it
a score 1. This weighting rewards the lowest numbered identifier in an arbitrary
set IDsi

. Then scores for all occurrences of idi are accumulated. Repeat this
procedure for every idi in ID, where i ∈ [1, |ID|], and the identifier idi that
bears the highest accumulated score is assigned to the protein mention p.

The heuristic behind the weight assignment (ie., weight 3 to the lowest num-
bered id and 1 to others) is that cm ids are formed with an uppercase P and
digits (e.g., P00678045 ). We observed that the lower numbered ids tend to occur
more often than the higher numbered ones, and therefore the lower numbered
ids are more likely to become the correct identifiers for a protein mention. The
next section describes another disambiguation method which empirically proved
this observation.

Other Disambiguation Methods We also implemented three other disam-
biguation methods. First, as a baseline approach, we assign to a protein mention
an arbitrary identifier taken from the pool of candidate identifiers associated to
it. The second method is also straightforward. As we mentioned, we observed
that the cm ids are formed with an uppercase P and digits (e.g., P00678045 ).
We sort the candidate ids in numerical order with respect to the numerical part
in the ids and then assign the lowest numbered id to the protein mention. If this
system outperforms the first one, it means that the ordering of cm ids are not
arbitrary and lower numbered ids are more likely to be the correct identifiers.

We applied a Vector Space Model (vsm) in the third system. In detail, in
order to disambiguate a protein mention (p), we represent the textual context
that p appears in as a vector of N word features, which we call a ‘context’
vector, where each feature has an 1 or 0 value to indicate occurrence or absence
of a non-functional word. Similarly , we build n ‘definition’ vectors for all of
the candidate identifiers, where ‘definition’ means description (ie., synonyms,
species, etc) of a candidate identifier in cm. The ‘context’ vector is then compared



to the ‘definition’ vectors using the cosine similarity measure.14 The identifier
with a ‘definition’ vector that is most similar to the ‘context’ vector is assigned
to the protein mention.

Table 2. Performance (%) of the four disambiguation systems in ti as evaluated on
devtest data, ranked by f1.

System Precision Recall F1

Species tagging+Heuristic ranking 64.1 55.5 59.5
Lowest id 52.1 46.4 49.1

vsm 48.9 43.5 46.0
Random id 47.3 41.1 44.1

The performance of the 4 systems are compared as shown in Table 2. The
first system with a species-tagger is in lead for a large margin. Interestingly, the
second system that selects the lowest cm id significantly outperformed the one
that assigns random id. This indicates that the lowest numbered id in a men-
tion’s candidate id set has more chances to be its identification. This heuristic
is used in the first system and empirically worked. The third system that com-
pares ‘context’ vectors and ‘description’ vectors did not perform as well as we
expected. One of the reasons might be that the glosses of identifiers in CM are
too short, which causes the ‘definition’ vectors too sparse to be representative.
There are two possible solutions that we could try in the future: one is to use
a better ontology that have more extensive descriptions for its protein entries,
and the other is to use smoothing techniques to alleviate the data sparseness
problem.

4.3 Results

The best result of ti was achieved by combining machine-learning based species
tagging and rule-based disambiguation. Table 3 shows the precision, recall and f1
of our system, as evaluated on devtest data and blind test data,15 together with
iaa. Recall that iaa indicates the performance by human experts on the same
task. Our ti system has achieved a very promising performance that exceeded
85% of iaa. Also note that the machine-learning species tagger achieved an

14 Cosine similarity: corr(v, w) =

∑N

i=1
viwi√∑N

i=1
vi

2
∑N

i=1
wi

2

, where v and w are vectors

and N is the dimension of the vector space.
15 Evaluation on blind test data was carried out independently by a third-party or-

ganisation who only evaluated the ti system as a whole. This explains why the
performance of species tagging on the blind test data is unknown.



accuracy of 75.60% on the development test data, which is much higher than its
performance of 10-fold cross-validation on the training data.16

Table 3. ti performance on Devtest data. ST denotes ‘species tagging’. All figures are
in percentage (%).

Dataset iaa st Accuracy Precision Recall f1 % to iaa

devtest 69.55 75.60 64.14 55.51 59.51 85.56

test 69.55 - 65.10 56.42 60.44 86.90

5 Conclusions

Our ti system automatically links mentions of proteins in biomedical texts to ids
in a referent protein database. It achieves this in two steps of term normalisation
and term disambiguation. The first step involves collection of all potential ids
that can be associated to the mention in question, using fuzzy-matching rules.
This approximate searching process found corresponding entries to protein men-
tions in our devtest data 86.53% of the time. It is highly possible that multiple
cm ids are retrieved for a single protein mention (over 73% cases, as estimated
on devtest data). Our disambiguation module resolves the ambiguity by using
machine-learning species tagging and a heuristic rule.

One of the distinctive features of our system is that it integrates assignment of
the species as an indispensable part, which makes it capable of tackling identifi-
cation of protein mentions across a number of species. Experimental results have
shown our ti system achieved promising results. Note that our species tagger
can also be used independently in text mining systems that require identification
of model organism,

We carried out our work using a commercial protein database and manually
annotated data. In the future, we will investigate the possibility of using publicly
available protein databases, such as RefSeq. We will also study the feasibility of
training the species tagger using automatically acquired training data, hence to
make a completely unsupervised system.
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