
An Ontology for NLP Services

Ewan Klein, Stephen Potter

National eScience Centre/School of Informatics
University of Edinburgh, Edinburgh, Scotland

{ewan,stephenp}@inf.ed.ac.uk
Abstract

1. Introduction

The main focus of this paper is a framework for describing
and discoveringNLP processing resources. In many ways,
the most difficult aspect of this task is the huge space of
options. Even disregarding the wide variety of theoretical
models for describing natural languages, and even if we re-
strict attention exclusively toNLP tools, there is sufficient
diversity within theNLP community to provoke much dis-
agreement about the best way to describe such tools. In this
paper, we try to narrow down the range of choices by fo-
cusing on the following issues. First, we emphasize the role
of description in supportingtool interoperability . Second,
we place interoperability within the context ofservice com-
position. Third, we develop an ontology ofNLP services
that is informed by theOWL-S semantic framework (OWL-
S).

2. Service Use Cases

2.1. Describing NLP Resources

Before embarking on proposals for how language resources
should be described, it is important to consider what re-
quirements need be met. Consequently, we describe two
use cases which will guide our design objectives. We are
currently interested in addressing the needs of two, rather
different, communities of users:NLP researchers, on the
one hand, andusers of domain-specific text mining ser-
vices, on the other.

2.2. The NLP Workbench

NLP researchers frequently wish to construct application-
specific systems that combine a variety of tools, some of
them in-house and some of them third-party. For example,
to carry out a named entity recognition task, Janet might
want to run a statistical classifier over a corpus that has been
tokenized, tagged with parts of speech (POS) and chun-
ked. She might use her own tokenizer and chunker but use
someone else’s tagger — say theTnT tagger (Brants, 2000).
She will almost certainly have to write some glue code in a
scripting language to plug these different tools together.

Suppose now that John needs to work with Janet’s system
a few months later. He wants to try the same experiment,

We are grateful to Steven Bird, Denise Ecklund, Harry Halpin
and Jochen Leidner for helpful discussion and comments.

but using a different tagger – say theCandC tagger (Cur-
ran and Clark, 2003). A number of issues arise. First, how
likely is it that John can simply re-run Janet’s system as it
was? Can he be sure that he’s using the same versions of
the software, trained on the same data? Can he be sure that
he’s getting the same results against the same Gold Stan-
dard test data? For such a scenario, it would be useful to
have some method for recording and archiving particular
configurations of tools, together with a record of the results.
Moreover, the configuration needs to include information
about the location of the relevant versions of the tools. Re-
running the experiment should ideally be as simple as firing
up a configuration manager and reloading the configuration
script from a pull-down menu.

Assuming that all went smoothly, how likely is it that John
can simply remove the call toTnT in Janet’s script and
splice inCandC instead? Do they have the same formatting
requirements on their input and output? Do the available
pre-trained versions of these taggers use the same tagsets?
Do they require the same number of command-line argu-
ments? Unfortunately, the answer to these three questions
is No.1 This problem is hard for the human to deal with;
consider how much harder it would be to develop a work-
bench that would automatically check whether two tools
could be serially composed. A crucial obstacle to auto-
matic composition is that we lack a general framework for
describingNLP tools in terms of their inputs and outputs.

2.3. Text Mining for e-Science

There is increasing interest in deploying text mining tools
to assist scientists in various tasks. One example is knowl-
edge discovery in the biomedical domain: a molecular biol-
ogist might have a list of 100 genes which were detected in
a micro-array experiment and wishes to trawl through the
existing published research for papers which throw light on
the function of these genes. Another example is the as-
tronomer who detects an X-ray signal in some region of
the sky, and wants to investigate the online literature to
see if any interesting infra-red signals were detected in the
same region. These brief scenarios are special cases of a
more general interest in using computing technologies to
support scientific research, so-called “e-Science” (Hey and

1For example, in the case of formatting requirements,TnT uses
multiple tabs as a separator between word and tag, while by de-
fault, CandC uses the underscore as a separator; it can, however,
be configured to use a single tab as separator.

Trefethen, 2002).

In such cases, we expect that the researcher will be us-
ing a workflow tool; that is, something that “orchestrates
e-Science services so that they co-operate to implement
the desired behaviour of the system”.2 In this context, we
would want the researcher to have access to a variety of text
mining services that will carry out particular tasks within a
larger application. A service might be essentially a doc-
ument classification tool which retrieves documents in re-
sponse to a string of keywords. However, it might be a
more elaborate information extraction system which, say,
populates a database that is then queried by some further
service.

Each text mining tool which is accessible to the scientist
end-user must be able to describe what kind of service it
offers, so that it can be discovered by the workflow tool.
We would expect there to be a more coarse-grained func-
tionality in this use case: the scientist is unlikely to care
which tagger is being used. Nevertheless, it will not always
be easy to predict in advance where the external boundary
of a text mining service will lie, so in principle the chal-
lenge of developing explicit and well-understood interfaces
for text mining services overlaps with the previous use case.
An additional constraint is that theNLP tools must be in-
teroperable with other services provided by the e-Science
workflow environment, and must be accompanied by de-
scriptions which are intelligible to non-NLP practitioners.

3. Design Influences and Goals

In order to tease out requirements, let’s reflect further on
our first use case. Assume that we are given a simple
pipeline of processors which carries out some well-defined
text processing task. We wish to remove one processor, say
a POS tagger, and splice in a new one, while ensuring that
we preserve the overall functionality of the pipeline. This
means that we need to abstract away from particular tag-
gers to a class of such tools, all of which carry out the same
transformation on their input. At this level, we can talk
broadly aboutinterchangeability of functionally equiva-
lent processors. On the other side of the coin, informa-
tion about the input and output parameters of two taggers
A and B must be detailed enough for us to tell whether,
when A is replaced byB, B will accepts input from the
immediately preceding processor and produce output that
is acceptable for the immediately following processor. In
other words, we require a processor to be accompanied by
metadata which enables us to make decisions aboutinter-
operability .

de Roure and Hendler (2004) argue that interoperability
is a key notion for the e-Science research programme,
and that technologies from both the Grid (Foster et al.,
2001) and the Semantic Web will underpin the programme.
The integration of the two technologies has been dubbed

2See http://www.nesc.ac.uk/esi/events/303/, which
offers a fairly recent overview of current work in the workflow
area.

the Semantic Grid and both approaches interoperability
as being achieved through deployment ofservices. Fos-
ter et al. (2002) give a general characterization of ser-
vices as “network enabled entities that provide some ca-
pability through the exchange of messages”, and argue
that a service-oriented perspective supports virtualization
in which resources can be accessed uniformly despite being
being implemented in diverse ways on diverse platforms.

We would like, then, an environment that offers an infras-
tructure for the discovery, orchestration and invocation of
services, and one that is flexible and permits a high degree
of re-use and automation of workflows. This desire coin-
cides with the aims of much of the effort in the Semantic
Web Services community, and so it is to this community
that we look for guidance.

The Semantic Web ‘vision’ is one of enhancing the repre-
sentation of information on the web with the addition of
well-defined and machine-processable semantics (Berners-
Lee et al., 2001), thereby encouraging a greater degree of
‘intelligent’ automation in interactions with this complex
and vast environment. One thread of this initiative concerns
the provision of web-based services: the web has great
potential as a medium for, on the one hand, web service-
providers to advertise their services and conduct their busi-
ness, and on the other, for those with particular service
needs to publicise these needs to the environment so as to
have them satisfied.

3.1. Description Logics and OWL-S

A number of de facto standards exist for locating and
invoking web services; these include Unversal Descrip-
tion, Discovery and Integration protocol (UDDI; Bellwood
et al., 2002), a protocol for building and using registries of
services, the Web Services Description Language (WSDL

Christensen et al., 2001), anXML -based language for de-
scribing the operations a service offers, andSOAP (Gudgin
et al., 2003), anXML -based messaging protocol for com-
municating with a service. At the time of writing, however,
the discovery and use of the relatively few services which
exist relies to a large extent on syntactic matching of terms
and on human engineering of the content of the invocation
calls to them. In order to move towards a semantic service
environment, efforts have been made over the last couple
of years to develop theOWL-S (previouslyDAML -S) upper
ontology for describing web services. The intention of this
initiative is to provide anXML -based ontology which stip-
ulates the basic information that services should expose to
the environment in order to facilitate their automatic dis-
covery, invocation, composition and monitoring (OWL-S).
This ontology is specified in theOWL Web Ontology Lan-
guage which provides a language for specifying Descrip-
tion Logic constructs in the syntax ofXML and building on
top of theRDF data model. Description Logics (e.g. Baader
et al., 2003) form a subset of first-order logics which are
particularly suited to the description of hierarchical ontolo-
gies of concepts, and possess appealing tractability charac-
teristics. Hence, anOWL document describes a machine-

processable ontology or fragment of an ontology.

3.2. OWL -S: Profile, Process and Grounding

The OWL-S ontology is divided into three principal areas
(cf. Figure 1). TheService Profile is used to describe the
purpose of the service, and so primarily has a role in the
initial discovery of candidate services for a particular task.
For the purposes of this paper, we will concentrate on the
use and description of profiles, and hence onNLP service
discovery. TheService Modeldescribes how the service is
performed, and is intended for more detailed consideration
of the adequacy of the service for the task, to allow the pre-
cise composition and coordination of several services and
to enable the execution of the service to be monitored. Fi-
nally, theService Grounding specifies in concrete terms
how the service is actually invoked, the nature of the mes-
sages it expects, the address of the machine and port to
which these messages should be addressed and so on. We
assume that, in general, if a service profile meets the re-
quirements of a client, then any grounding of that service
will be an adequate instantiation.

The role of the Profile, then, is to describe the essential
capability of the service by characterizing it in functional
terms (in addition, non-functional aspects of the service can
be specified through additional ‘service parameters’). This
functional characterization is expressed by detailing the in-
puts a service expects, the outputs it produces, the precon-
ditions that are placed on the service and the effects that the
service has. As well as characterizing services, the Profile
has an additional use: to allow potential clients to specify
and query for their desired services (which may be partial
or more general in nature where details are irrelevant to the
client).

Through the use of theseIOPE (Input-Output-
Preconditions-Effects)parameters, a service (or query)
may be described in terms of a transformation of its input
data into its output data (for example, a POS tagging
service can be described as transforming a document into a
tagged document). By ‘typing’ data in this fashion, we gain
the ability to define and instantiate ‘semantic pipelines’ of
data through a workflow consisting of a number of distinct
services.

However, another mode of use is possible: by extending the
coreOWL-S ontology within a particular domain with sub-
classes of theProfile class, we also gain the ability to ad-
vertise and request services in terms of their categorization;
so one might ask for, say, anNL-Tagger if one knew that
a tagger was required at this point in the workflow. Both
the ‘transformation’ and ‘categorization’ modes have their
uses, and so it is desirable that they be supported in any
environment.

This leads to consideration of precisely how particular ser-
vices in a particular domain are to be described. TheOWL-
S ontology is (necessarily) domain-independent: to ex-
press concepts of particular domains one has to extend the
OWL-S ontology through the introduction and use of addi-

tional ontological knowledge. However, the use of domain-
specific ontologies in this manner places certain obligations
on agents in this domain. For service discovery to be pos-
sible, both the service providers and potential clients must
use the same ontologies: the former to advertise their ser-
vices, the latter to formulate their requests.3 Accordingly,
there is a need for a standardization effort within domains
in order to develop useful and useable ontological descrip-
tions of services. Section 4. describes one such extension
of the OWL-S Profile, for describingNLP services, and in
such a manner as to permit both the transformation and cat-
egorization modes of use described above.

3.3. Reasoning with Profiles: Brokering

Another implication of our approach is that there is at least
one ‘broker’ agent in the domain that acts as a repository
for service advertisements and is able to answer service re-
quests.4 The locations of these brokers would of necessity
be knowna priori to agents in the domain.

Among the fundamental reasoning capabilities of Descrip-
tion Logics are the subsumption of class terms and the clas-
sification of individuals into their appropriate categories or
classes. Brokers can exploit these abilities to perform ser-
vice discovery in a number of different ways. For example,
on its advertisement, the profile description can be used
to classify this service instance into its appropriate loca-
tion in the domain ontology. Subsequent queries can be
interpreted as defining a class description of the desired
services; the instances of classes in the service hierarchy
which are equivalent to or subsumed by this class are con-
sidered to satisfy this query.5

It is with this sort of reasoning in mind that we approach
the formalization of theNLP domain.

4. A Profile Hierarchy for Linguistic
Resources

If we view NL resources as classes arranged in a hierarchy,
then a number of taxonomies are possible. It seems rela-

3Alternatively, one could envisage the use of different ontolo-
gies, along with descriptions of equivalence mappings between
their entities, but this introduces additional engineering and pro-
cessing overheads. The automation of ontology mapping is a dif-
ficult problem, for which there are currently no general solutions.

4Different types of broker are possible. The simplest (some-
times termed a ‘matchmaker’ agent) would return matching ad-
vertisements to the requesting agent, which is then responsible for
selecting and invoking one of these services. More sophisticated
brokers might try to dynamically construct composite ‘services’
consisting of a number of individual services were none of these
alone can satisfy the query, or else to apply heuristics to select,
negotiate with and invoke services on behalf of the requester. Cf.
(Paolucci et al., 2002) for further discussion.

5This basic approach can be extended, if more solutions are
required, to return instances of classeswhich subsumethe query
class, or even of those which are merely not necessarily disjoint
with the class (although the solutions returned in these cases can
no longer be ‘guaranteed’, in any sense, to satisfy the query).

ServiceResource

ServiceProfile

ServiceModel

ServiceGrounding

provides

presents

described-by

supports

Figure 1:OWL-S Service Ontology

tively uncontroversial to posit a classNL-Resource which
is partitioned into two subclasses,NL-StaticResource and
NL-ProcessingResource (cf. Cunningham et al., 2000). By
‘static resources’ we mean things like corpora, probabil-
ity models, lexicons and grammars; by ‘processing re-
sources’ (or processors) we mean tools such as taggers
and parsers that use or transform static resources in vari-
ous ways. As mentioned earlier, the main challenge is to
find a motivation for imposing a further taxonomy ontoNL-
ProcessingResource. Our proposal rests on the following
ideas:

1. NLP processors have documents as both input and out-
put.

2. Documents have properties which impose precondi-
tions on processors and which also record the effects
of processing.

3. A specification of the properties of documents, as in-
put/output parameters, induces a classification ofNLP

processors.

We make the assumption thatNLP tools are in generalad-
ditive, in the sense that they contribute new annotation to
an already annotated document and do not remove or over-
write any prior annotation.6 As a result, at any point in the
processing chain, the annotated document is a record of all
that has preceded and thereby provides a basis for making
subsequent annotation decisions. This general approach is
particularly prominent inXML -based approaches to linguis-
tic markup, but is also prevalent elsewhere.

4.1. Document Properties

Figure 2 illustrates theDocument class, together with its
main properties. We do not wish to be prescriptive about
the allowable class of values for each of these properties.
Nevertheless, we will briefly describe our current assump-
tions.

6In practice, some removal of low-level annotation might take
place, and we could also envisage approaches in which ambiguity
is reduced by overwriting previous annotation. Nevertheless, for
current purposes the assumption of additivity seems a reasonable
simplfication,

Document
hasMIME-Type MIME-Type
hasDataFormat anyURI
hasAnnotation Annotation
hasSubjectLanguage ISO-693
hasSubjectDomain Domain

Figure 2: TheDocument class

hasMIME-Type : The obvious values to consider are
audio for processors which allow speech input, and
text/plain andtext/XML for text processing tools.
However, we also wish to allow cases where the value
of hasMIME-Type is underspecified with respect to
these second two options. Consequently, we treat
Text as a subclass ofMIME-Type, partitioned into sub-
classesTextPlain andTextXML.

hasDataFormat : The value of this property is a URI, more
specifically, the URI of a resource which describes the
data format of the document. By default, the resource
will be an XML DTD or Schema, but any well-defined
specification of the document’s structure would be ac-
ceptable in principle.

hasAnnotation : We treat Annotation as an enumerated
class of instances, namely the class{word, sentence,
pos-tag, morphology, syntax, semantics, pragmat-
ics}. Although we believe that these annotation types
are fairly non-controversial, any broadly-accepted re-
stricted vocabulary of types would be acceptable. The
presence ofword andsentence reflect the fact that to-
kenizers will typically segment a text into tokens of
one or both these types. Types such assyntax are in-
tended to give a coarse-grained characterization of the
dimension along which annotation takes place. How-
ever, the specific details of the annotation will depend
on the data model and linguistic theory embodied in a
given processing step, and we wish to remain agnostic
about such details.

hasSubjectLanguage : Following Bird and Simons
(2001), we use the term ‘subject language’ to mean
“the language which the content of the resource
describes or discusses”. Values for this property

are presumed to come from ISO 639 (i.e., two- or
three-letter codes).7

hasSubjectDomain : We are focussing here on tool-
related properties, rather than application-related
properties; consequently the domain or subject mat-
ter of a document is outside the scope of our discus-
sion. However, within a given application, there may
well be domain ontologies which would provide use-
ful detail for this property. Moreover, it is obviously of
interest to test whether a statistical tool that has been
trained on one domain can be ported to another.

At least some of the document properties that we wish
to record fall within the scope of Dublin Core metadata,
and indeed we might want augment the properties men-
tioned above with further elements from the Core, such as
publisher andrights. Bird and Simons (2003) have ar-
gued in favour of uniformly building metadata for describ-
ing language resources as extensions of the Dublin Core.
On the face of it, this is an attractive proposal. However,
there is at least a short term obstacle to implementing it
within our current framework: as an intellectual resource,
an OWL-S ontology also needs to be provided with meta-
data, and the obvious solution is to encode such informa-
tion using Dublin Core elements. Thus, we would need
to carefully distinguish between metadata concerning the
ontology itself, and metadata concerning classes of objects
(such asDocument) within the ontology. We therefore post-
pone consideration of this issue to the future.

4.2. Processing Resources

In Figure 3, we sketch a portion of the Profile Hierarchy in
order to illustrate the classification of processing resources.
The classNL-ProcessingResource is shown with two prop-
erties,hasInput andhasOutput: both take values from the
classDocument. Now, we can create subclasses ofDoc-
ument by restricting the latter’s properties. For example,
consider the classDocument u ∃ hasMIME-Type . Text.
This is interpreted as the intersection of the set of things
in the extension ofDocument with the set of things whose
hasMIME-Type property takes some value from the class
Text.

To create a subclass ofNL-ProcessingResource, we restrict
the class of the inputs, outputs, or both. For example, if the
propertyhasInput is restricted so that its value space is not
the whole classDocument, but rather just those documents
whose MIME type isText, then we thereby create a new
subclass ofNL-ProcessingResource; i.e., those processors
whose input has to be text rather than audio. We call this
the classNL-Analyzer (implicitly in contrast to speech rec-
ognizers, whose input would be audio). Note that since the
domain of the propertyhasMIME-Type is in any case re-
stricted to the classDocument, we can simplifyhasInput
. (Document u ∃ hasMIME-Type . Text) to hasInput . (∃
hasMIME-Type . Text), as shown in the property specifica-
tion for NL-Analyzer in Figure 3.

7Cf. http://www.loc.gov/standards/iso639-2/.

Every subclass ofNL-Analyzer will of course inherit these
restrictions, and will in turn impose further restrictions of
their own.8 Thus, we might insist that every tokenizer iden-
tifies and annotates word tokens. That is,NL-Tokenizer’s
output will be aDocument with the additional restriction
that the set of annotation types marked in the document
containsword. Similarly, NL-Tagger will require that its
input document has been marked for the annotation type
word (i.e., has been tokenized), and will output a document
which has additionally been marked for the annotation type
pos-tag.

Recall that as a value ofhasMIME-Type, Text is underspec-
ified: it can be specialised as eitherTextPlain or TextXML.
Consequently, a tagger which was able to deal equally with
both kinds of input could advertise itself as having the more
general value forhasMIME-Type, namelyText. This would
allow us to compose the tagger with a tokenizer whose
output had the propertyhasMIME-Type . TextXML—that
is, composition is allowed if the input of the tagger sub-
sumes the output of the tokenizer. However, the reverse
is not true. Suppose the tagger only accepts input with
hasMIME-Type . TextXML. Then it cannot straightforwardly
be composed with a tokenizer whose output is more gen-
eral, namelyhasMIME-Type . Text.

Although we have concentrated onDocument as the input
parameter for processors, we need to allow additional in-
puts. For example, we allow theNL-Tagger class to have
the input parameterusesTagset, where possible instances
would include the Penn Treebank Tagset, theCLAWS2
Tagset, and so on. Moreover, the subclass of probabal-
istic taggers would require an additional input parameter,
namely the probability model acquired during training.

Within the framework ofOWL-S, we would expect a con-
crete service to be an instance of a class defined in the Pro-
file Hierarchy. Thus, a particular tagger, sayTnT, would
advertise itself by declaring that it was an instance ofNL-
Tagger, and further specifying values for properties that
were mandatory for this class.

4.3. Data Format Requirements

In our earlier discussion, we said that the value ofhas-
DataFormat would be a file URI. An alternative would be
to allow processors to specify abstract data types as in-
puts and outputs (Sycara et al., 2002; Zaremski and Wing,
1997). For example, we might say that a tagger takes as in-
put a sequence of sentences, each composed of a sequence
of word tokens, and outputs a sequence of sentences, each
composed of a sequence of word-tag pairs. However this
doesn’t fit in well with the limitations of ontology lan-
guages such as Description Logic. For the purposes of
matchmaking, a pointer to a format definition file outside
the profile hierarchy seems sufficient and more tractable.

8Note that Description Logic, and thusOWL-S, only supports
strict inheritance—defaults are not accommodated.

NL-ProcessingResource
hasInput Document
hasOutput Document

NL-Analyzer
hasInput ∃hasMIME-Type . Text
hasOutput ∃hasMIME-Type . Text

isa

NL-Tokenizer
hasOutput hasAnnotation = {word}

isa

NL-Tagger
hasInput hasAnnotation = {word}
hasOutput hasAnnotation = {word,pos-tag}

isa

Figure 3: TheProcessingResource class

Figure 4: AnNLP Web Service Client tool

5. Towards Implementation

To experiment with some of the ideas proposed in this pa-
per, we have developed a prototype environment for the
discovery, coordination and (eventually) invocation ofNLP

Web Services. TheNLP Profile Hierarchy described in sec-
tion 4. has been implemented as anOWL ontology, using
the Prot́eǵe editor andOWL plugin.9 Unfortunately, the ver-
sions of theOWL-S ontologies available at the time of writ-
ing fail to validate in Prot́eǵe, and we therefore based our
approach on the modified versions made available by Péter
Mika at http://www.cs.vu.nl/˜pmika/owl-s/. The
version of theNLP Profile Hierarchy described here can be
found athttp://gridnlp.org/ontologies/2004/.

In order to be able to reason aboutNLP services, we have
used a broker service, built on top of theRACER (Haarslev
and Moller, 2001) Description Logic engine. This bro-
ker maintains a description, based on theNLP ontology, of
the available language processing resources in the environ-
ment; when it receives service advertisements, described
using OWL-S and this domain ontology, it classifies these
and stores them as instances of the appropriate class in the
hierarchy. On receiving anOWL-S query, it composes a
class description from this and then returns, as potential

9Seehttp://protege.stanford.edu/ for details.

solutions, (theURLs of) any service instances of classes
equivalent to or subsumed by this description.

This broker is itself a web service, accessed through a
WSDL end-point. On the client side, we have developed
a prototype composition tool for composing sequences of
services and querying the broker. The user is able to spec-
ify either the type of processing resource that is needed, or
the constraints on the data inputs and outputs to some ab-
stract service (or a combination of both) and the tool con-
structs the appropriateOWL-S, sends this to the broker (via
WSDL andSOAPmessaging which is hidden from the user)
and then presents the alternative services — if any — to
the user. Once a user selects one of these, the tool fetches
the URL of the service to extract more detailed informa-
tion about the service, and the user’s composition view is
updated accordingly.

Figure 4 shows a screen-shot of the tool being used to de-
fine a workflow; data, represented by directed edges in this
graph (with labels describing the class of the data) flows
from ‘Sources’ to ‘Sinks’ via one or more services, repre-
sented as nodes, labelled with the service name and class.
Hence, the screen-shot shows a two-service workflow, pro-
ducing a DOCUMENT output. To illustrate the use of the
tool, and its interaction with the broker, we will now step
through the process by which this simple workflow was

Figure 5: Specifying the class of a desired service

Figure 6: Elaborating the workflow through interaction with the broker

constructed. (To keep this example reasonably clear, the
services described are described in rather less detail than
might be expected in reality.)

The user — anNLP researcher — here begins with the de-
sire to produce a parsed document. Accordingly, she be-
gins by defining an (anonymous) service of classParser.
The tool has access to theNLP ontology, and a pop-up win-
dow allows the class of the desired service to be specified
(Figure 5).

Now, the user, via a drop-down menu, places a call to the
broker (the address of which is hard-wired into this tool)
for details of available services that meet this specification.
This has the effect of creating anOWL-S document, the
Profile of which is an instance of classParser. Since this
is a query, the broker uses this information to find and re-
turn theURIs of (theOWL-S descriptions of) all advertised
instances of this class and of any of its child classes. In
this case, there are two such instances, calledMyLTChun-
kerParser and MyCassChunkerParser. These are pre-
sented to the user as alternatives; she arbitrarily chooses the
latter (which is of classCass-Chunker, an (indirect) sub-
class ofParser), and itsOWL-S description, which speci-
fies the required inputs (namely anNL-Grammar and some
(Document) thing whichhasMIME-Type of classTextPlain)

and the output (aDocument), allowing these to be automat-
ically added to the workflow (Figure 6).

Knowing that she needs to first tag the latterDocument in-
put, she now replaces its source node with an anonymous
service of classPOS-Tagger (Figure 7). The broker can
now be queried for services of this class which produce
an output whichhasMIME-Type of classTextPlain. Among
the matching services returned by the broker isMyTNT-
Tagger, which is selected and added to give the workflow
shown in Figure 4.

If satisfied with this workflow, the next steps would involve
checking and elaborating the workflow further using the
OWL-S Model of each individual service, and then invoking
the workflow using theGrounding of each. However, the
description of these elements of services will require fur-
ther conceptualization of the domain, and as a result these
steps are not yet implemented. The development of a sim-
ilar tool to allow human service providers to construct and
advertisethe OWL-S descriptions of their services is also
envisaged.

Figure 7: Extending the workflow

6. Conclusion and Future Work

We have argued that a service-oriented view ofNLP com-
ponents offers a number of advantages. Most notably, it al-
lows us to construct an ontology of component descriptions
in the well-developed formalism of Description Logic. This
in turn supports service discovery and service composition.
We have only considered serial composition here, but there
is no reason in principle not to allow more complex forms
of interaction between components.

One of the most interesting recent frameworks for con-
structing workflows ofNLP components is that proposed
by Krieger (2003). His approach deserves more detailed
consideration that we have space for here. However, an im-
portant difference between our approach and Krieger’s is
that we do not require components to interact within a spe-
cific programming environment such as Java. By wrapping
components as services, we can abstract away from issues
of platform and implementation, and concentrate instead on
the semantics of interoperability. In future work, we will
spell out in detail howNLP services described at theOWL-S

Profile level can be grounded in concrete resources.

References

Franz Baader, Ian Horrocks, and Ulrike Sattler. Descrip-
tion logics as ontology languages for the semantic web.
In Dieter Hutter and Werner Stephan, editors,Festschrift
in honor of J̈org Siekmann, Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2003.

Tom Bellwood, Luc Cĺement, and Klaus von Riegen.
UDDI technical white paper.http://uddi.org/pubs/
uddi-v3.00-published-20020719.htm, 2002.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, 284(5):34–43, 2001.

Steven Bird and Gary Simons. The OLAC metadata set
and controlled vocabularies. InProceedings of the
ACL/EACL Workshop on Sharing Tools and Resources
for Research and Education, Toulouse, 2001. Associa-
tion for Computational Linguistics.

Steven Bird and Gary Simons. Extending Dublin Core
Metadata to support the description and discovery of lan-
guage resources.Computing and the Humanities, 37:
375–388, 2003.

Thorsten Brants. TnT – a statistical part-of-speech tag-
ger. InProceedings of the 6th Applied NLP Conference,
ANLP-2000 of the 6th Applied NLP Conference, ANLP-
2000, 2000. URL\url{http://acl.ldc.upenn.edu/
A/A00/A00-1031.pdf}.

E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web services description language.http://
www.w3.org/TR/2001/NOTE-wsdl-20010315, 2001.

Hamish Cunningham, Kalina Bontcheva, Valentin Tablan,
and Yorick Wilks. Software Infrastructure for Language
Resources: a Taxonomy of Previous Work and a Re-
quirements Analysis. InProceedings of the 2nd Inter-
national Conference on Language Resources and Evalu-
ation (LREC-2), Athens, 2000.

James Curran and Stephen Clark. Language independent
NER using a maximum entropy tagger. In Walter Daele-
mans and Miles Osborne, editors,Seventh Conference
on Natural Language Learning (CoNLL-03), pages 164–
167, Edmonton, Alberta, Canada, 2003. Association for
Computational Linguistics. In association with HLT-
NAACL 2003.

David de Roure and James A. Hendler. E-science: The Grid
and the Semantic Web.IEEE Intelligent Systems, 19(1):
65–70, January/February 2004.

Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven
Tuecke. Grid services for distributed system integration.
Computer, 35(6):37–46, 2002.

Ian Foster, Carl Kesselman, and Steven Tuecke. The
Anatomy of the Grid: Enabling scalable virtual organi-
zations. International Journal of Supercomputer Appli-
cations, 15(3), 2001.

M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, and
H. F. Nielsen. Simple object access protocol (SOAP).
http://www.w3.org/TR/soap12-part1/, 2003.

V. Haarslev and R. Moller. RACER system description.
In Proceedings of the First International Joint Confer-
ence on Automated Reasoning, pages 701–706. Springer-
Verlag, London UK, 2001.

Tony Hey and Anne E. Trefethen. The UK e-Science core
programmed and the Grid.Future Generation Computer
Systems, 18(8):1017–1031, 2002. ISSN 0167-739X.

Hans-Ulrich Krieger. SDL—A description language for
building NLP systems. In Hamish Cunningham and Jon
Patrick, editors,HLT-NAACL 2003 Workshop: Software
Engineering and Architecture of Language Technology
Systems (SEALTS), pages 83–90, Edmonton, Alberta,
Canada, May 2003. Association for Computational Lin-
guistics.

OWL-S. OWL-S: Semantic markup for web ser-
vices. http://www.daml.org/services/owl-s/1.
0/, 2003.

Massimo Paolucci, Takahiro Kawamura, Terry R. Payne,
and Katia Sycara. Semantic matching of web services ca-
pabilities. InProceedings of the 1st International Seman-
tic Web Conference (ISWC2002), pages 333–347, 2002.

Katia Sycara, Seth Widoff, Matthias Klusch, and Jian-
guo Lu. Larks: Dynamic matchmaking among hetero-
geneous software agents in cyberspace.Autonomous
Agents and Multi-Agent Systems, 5:173–203, 2002.

Amy Moormann Zaremski and Jeannett M. Wing. Speci-
fication matching of software components.ACM Trans-
actions on Software Engineering and Methodology, 6(4):
333–369, 1997.

