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Abstract
We present a maximum-entropy based system for identifying Named Entities (NEs) in biomedical abstracts and present its performance
in the only two biomedical Named Entity Recognition (NER) comparative evaluations that have been held to date, namely BioCreative
and Coling BioNLP. Our system obtained an exact match f-score of 83.2% in the BioCreative evaluation and 70.1% in the BioNLP
evaluation. We discuss our system in detail including its rich use of local features, attention to correct boundary identification, innovative
use of external knowledge resources including parsing and web searches, and rapid adaptation to new NE sets. We also discuss in depth
problems with data annotation in the evaluations which caused the final performance to be lower than the optimal.

1. Introduction

The explosion of information in the biomedical domain
has led to immense interest in automated information ex-
traction techniques and consequently to a number of publi-
cations describing systems and results for natural language
processing tasks on biomedical data. With each group ad-
dressing varying tasks, using varying evaluation corpora,
and employing varying scoring methods, it has been impos-
sible to properly compare systems and assess the state of
progress in the field. The use of standardized evaluations to
remedy this state of affairs is only beginning; the Text Re-
trieval Conference only recently initiated a genomics track
to assess biomedical information retrieval and question-
answering. Here we focus on the task of Named Entity
Recognition (NER) which requires identification of names
in shallow semantic categories such as protein names or
drug names. A number of groups have reported results
on biomedical NER, attempting to identify anywhere be-
tween four and twenty-four categories, evaluating on cor-
pora ranging from 30 to 100 abstracts and reporting scores
varying from 3% for the class “RNA” to 92% for the spe-
cific protein “SH3” (Collier et al., 2000; Fukuda, 1998;
Kazama et al., 2002; Nobata et al., 1999). Recently, two
comparative evaluations have been held to evaluate the state
of progress in the field: BioCreative (Blaschke et al., 2004)
and Coling BioNLP (Collier et al., 2004).

In this paper we present a maximum-entropy based sys-
tem for NER in biomedical abstracts which was entered
in both of the above evaluations. Our system was origi-
nally designed for the BioCreative evaluation and was then
adapted for the BioNLP task. We describe our system in
detail including its exhaustive use of local context as well
as exploitation of a variety of external resources including
parsing, Google web-querying, and gazetteers. We present
our results in both evaluations and consider how the quality

of the data affected the results. We found that performance
in the tasks was more reflective of data quality than task
difficulty. We discuss ways of improving annotation to pro-
vide maximal performance for machine learning systems.

2. The Tasks
The BioCreative NER task required participants to

identify a single entity “NEWGENE” in biomedical ab-
stracts. This entity corresponded roughly to gene and pro-
tein names. Organizers provided 10,000 sentences from
MEDLINE abstracts as training data and 5000 sentences
as evaluation data. The average number of entities per sen-
tence was roughly similar in both training and evaluation
data (approximately 1.19).

The BioNLP NER task required participants to identify
the five NEs “protein”, “DNA”, “RNA”, “cell line” and “cell
type” in medical abstracts. The task was based on the GE-
NIA corpus (Ohta et al., 2002), a corpus of MEDLINE
abstracts annotated for approximately 35 NE classes in-
volved in biological reactions relating to transcription fac-
tors in human blood cells. The original set of NEs was
collapsed into the above 5 by merging specific classes such
as “protein molecule”, “protein family or group”, and “pro-
tein substructure” into broader classes (“protein”) and drop-
ping other classes such as “body part” and “virus” com-
pletely; the nested annotations contained in the original
corpus were also removed for simplicity. The organizers
did not say whether the adaptation of the corpus for the
BioNLP task was done automatically. The entire GENIA
corpus of 18,546 sentences was provided as training data,
and an additional 3,856 sentences as evaluation data. The
average number of NEs per sentence was quite different be-
tween the training and evaluation data (for protein 1.63 in
training versus 1.34 in testing, for DNA 0.51 vs 0.27, for
RNA 0.05 vs 0.03, for cell line 0.20 vs 0.12, for cell type
0.36 vs 0.49).



Both BioNLP and BioCreative used the same exact-
match scoring criterion in which participants were penal-
ized twice, both as a false positive (FP) and as a false
negative (FN), for an answer with incorrect boundaries.
For example, if the correct entity was human interleukin-2
gene and the system returned only interleukin-2, the former
would be counted as a FN and the latter as a FP.

3. System Description
Our system is a Maximum Entropy Markov Model (Mc-

Callum et al., 2000) with a Limited Memory Quasi-Newton
maximizer based on a system used for the CoNLL 2003
shared task (Klein et al., 2003). The system essentially uses
a logistic regression model to classify each word, overlaid
with a Viterbi-style algorithm to find the best sequence of
classifications. Maximum entropy models have been used
with much success in NER tasks and are known for their
ability to incorporate a large number of overlapping fea-
tures. For both evaluations we devoted most of our efforts
to finding useful features for the NEs required. The final
system makes exhaustive use of clues within the sentence
including character substrings, words, word shapes, and de-
tection of abbreviations, as well as using longer-distance
information obtained from the surrounding abstract and re-
lations obtained by parsing, and various external resources,
including a Google web-querying technique, the TnT part-
of-speech tagger (Brants, 2000), and a gazetteer. We nor-
malized names of months and days of the week to lower-
case, and mapped the British spellings of a few common
medical terms to their American equivalents. In the follow-
ing sections we describe our full feature set.

We outline first the features utilizing the local context
and secondly the features corresponding to external re-
sources and larger context. We also describe a postpro-
cessing phase aimed at reducing boundary errors. Our final
systems for both evaluations employed over 1.25 million
features.

3.1. Local Features

We used a variety of features describing the immediate
context of each word, including the word itself, the previous
and next words, bi-grams of the current word and next word
and the current word and previous word, character n-grams
up to a length of 6, word shapes,and features describing the
named entity tags assigned to the previous words. Word
shapes refer to mappings of words to simplified representa-
tions that encode attributes such as length and whether the
word contains capitalization, numerals, greek letters, and
so on. We also incorporated POS tags from the TnT tagger
trained on the GENIA gold standard for POS in biomedi-
cal text. We made use of abbreviation matching to ensure
consistency of labels between an abbreviation and its long
form. A list of abbreviations and long forms was extracted
from the data using the method of (Schwartz and Hearst,
2003); then all occurrences of the short and long forms in
the data were labeled as such. (For BioNLP, we combined
the list with the short and long forms from the BioCreative
data.) Features referencing these labels were then included
in the classifier. Following (Kazama et al., 2002) we added
disjunctive word features. Lastly, a parentheses-matching

Word Features w � , w ����� , w �����

Last “real” word (BioCreat. only)
Next “real” word (BioCreat. only)
Disj. of 4 prev words (BioNLP - 5)
Disj. of 4 next words (BioNLP - 5)

Bigrams w � + w ���	�

w � + w �����

TnT POS POS � , POS ���	� , POS �����
Character Substrings Up to a length of 6

(BioNLP - prefix/suffix only)
Abbreviations abbr �

abbr ����� + abbr �
abbr � + abbr �
���
abbr ����� + abbr � + abbr �����

Word Shape shape � , shape ����� , shape �
���
shape ���	� + shape �
shape � + shape �����
shape ���	� + shape � + shape �
���

TnT POS + Word w � + POS �
w ���	� + POS �
w ����� + POS �

Word Shape + Word w ���	� + shape �
w ����� + shape �

Shape + Word Disj shape � + Disj of 5 Prev Words
(BioNLP only) shape � + Disj of 5 Next Words
Previous NE NE ���	�

NE ���� + NE �����
NE ����� + NE ����� + NE �����
(BioNLP only)
NE ����� + NE ���	� + NE ����� + NE ���	�
(BioNLP only)

Previous NE + Word NE ���	� +w �

Previous NE + POS NE ���	� + POS ����� + POS �
NE ���� + NE ���	� + POS ���� +
POS ����� + POS �
NE ����� + NE ���� + NE ����� +
POS ���	� + POS ����� + POS ���	� +
POS � (BioNLP only)

Previous NE + Abbr NE ���	� + abbr ����� + abbr �
NE ���� + NE ���	� + abbr ����� +
abbr ����� + abbr �

Previous NE + Shape NE ���	� + shape �
NE ���	� + shape �����
NE ���	� + shape ���	� + shape �
NE ���� + NE ���	� + shape ���� +
shape ���	� + shape �

PrevNE+Shape+POS
(BioNLP only)

NE ���� + NE ���	� + POS ���� +
POS ����� + POS � + shape �
NE ����� + NE ���� + NE ����� +
POS ���	� + POS ����� + POS ���	� +
POS � + shape �

Paren-Matching A feature that signals when one
parentheses in a pair has been
assigned a different tag than the
other in a window of 4 words

Table 1: Local Features

feature that signalled when one parenthesis was classified
differently from its pair was added in an effort to eliminate
errors where the tagger classified matching parentheses dif-
ferently. We combined all of the above base-level features
in various ways. The full set of local features is outlined in
Table 1.



3.2. External Resources and Larger Context

The features described here comprise various external
resources including gazetteers, a web querying technique
and relations obtained by parsing. The basic assumption
behind and motivation for using external resources is that
there are instances in the data where contextual clues do not
provide sufficient evidence for confident classification. In
such cases external resources may bridge the gap, either in
the form of word lists known to refer to genes (gazetteers)
or through examination of other contexts in which the same
token appears and the exploitation of more indicative con-
texts (as with web-querying and use of surrounding text
such as abstracts).

3.2.1. Deep Syntax Features
Our system benefits from relational information ob-

tained by parsing. While it has been stated that full parsing
of biomedical text is beyond current technology, we were
able to successfully parse the BioNLP training and evalua-
tion corpora using the Stanford Parser (Klein and Manning,
2003) operating on the TnT POS tags. Since we did not
have parsed biomedical text with which to train the parser,
we used the parsed Wall Street Journal; we believe that the
unlexicalized nature of the Stanford parser made it suitable
for parsing data from a different domain. For each word
that appeared in a noun phrase, the head and governor of the
noun phrase were extracted. These features were not use-
ful in BioCreative because it involved identification of only
one entity, but they were useful for BioNLP where one had
to disambiguate between similar classes; (Shen et al., 2003)
and (Nobata et al., 1999) also benefit from use of head noun
features with the GENIA entities. This disambiguation re-
quires longer distance information and a better representa-
tion of the context in which the word appears. For instance,
the word phosphorylation occurs in the training corpus 492
times, 482 of which it was classified as other. However, it
was the governor of 738 words, of which 443 were protein,
292 were other and only 3 were cell line.

3.2.2. Abstract
A number of NER systems have made effective use of

how the same token was tagged in different parts of the
same document (Mikheev et al., 1999; Curran and Clark,
2003). A token which appears in an unindicative context
in one sentence may appear in a very obvious context in
another sentence in the same abstract. To leverage this
we tagged each abstract twice, providing for each token a
feature indicating whether it was tagged as an entity else-
where in the abstract. For BioCreative we were provided
only single sentences from abstracts; we used cgi scripts to
automatically obtain the corresponding full abstracts from
MEDLINE. In a practical application this would be unnec-
essary since one would always have the full abstract. Ab-
stract information was only useful when combined with in-
formation on frequency.

3.2.3. Web
As the largest corpus in existence, the web has been

used effectively in a variety of NLP tasks (Keller and Lap-
ata, 2003; Grefenstette, 1999; Markert et al., 2003). In our

use of the web we built several contexts indicative of tar-
get entities, such as “X gene” or “X antagonist” for genes,
“X mRNA” for RNA, or “X ligation” for proteins. We then
substituted the variable “X” with potential entities and sub-
mitted the resulting patterns to the web. We used the num-
ber of hits obtained for each pattern to build a feature for
the classifier. While the underlying principle was the same,
the indicative contexts as well as the input X to such pat-
terns differed in the two tasks. In both cases we submitted
the pattern instantiations to the web using the Google API.

For BioCreative, we built patterns for each entity X
identified as a gene by an initial run of the tagger. If at least
one of the patterns returned more than zero hits, the string
was assigned a ‘web’ value for the Web feature. The clas-
sifier was then run again; this time incorporating the web
feature. Using web-querying only on likely candidates for
genes as identified by an initial run of the tagger was more
efficient than using it on all words. However, this method
does not contribute to improving recall.

In the BioNLP task, we experimented with a different
approach. We built indicative contexts for each of the five
classes to be recognised and for each word X which had
a frequency lower than 10 as estimated from the British
National Corpus (BNC) 1 (Kilgarriff, 1997), we submit-
ted the instantiation of each pattern to the Web. The pat-
tern that returned the highest number of hits determined the
feature value (e.g. “web-protein”, or “web-RNA”). If no
hits were returned by any pattern, a value “O-web” was as-
signed. The same value was assigned to all words whose
frequency was higher than 10.2 This method proved less
successful than the one used in our BioCreative system; it
is unclear whether this is due to the method or to differences
in the BioNLP task. In future work we will reproduce the
same experiments on the two datasets in order to answer
this question.

3.2.4. Gazetteer
Our gazetteer was compiled from lists of gene names

from biomedical sites on the Web (such as Locus Link) as
well as from the Gene Ontology and the data provided for
BioCreative Tasks 1A and 1B. The gazetteer was cleaned
by removing single character entries (“A”, “1”), entries con-
taining only digits or symbols and digits (“37”, “3-1”), and
entries containing only words that could be found in the
English dictionary CELEX (“abnormal”, “brain tumour”).
The final gazetteer contained 1,731,581 entries.

3.2.5. Frequency
We sought to incorporate information on frequency pri-

marily as a way to weight information from external re-
sources and to a lesser extent to indicate independently
which tokens might be names. Because more frequent
words are more likely to be ambiguous and less frequent
words are far less likely to be ambiguous, we assumed that
information from external resources would be of greater use
for low frequency words. We therefore assigned to each

1The BNC is a 100-million word corpus taken from a wide
variety of sources.

2Using yet another value for words with higher frequency did
not improve the tagger’s performance.



word a frequency category corresponding to the number of
times the word was seen in a corpus. For BioCreative the
corpus used was the BioCreative training data. For BioNLP,
we improved on this by using counts from the BNC. We
found that the frequencies obtained from the BNC were
more intuitive than frequencies from a medical corpus.

3.3. Postprocessing
For BioCreative, we found that many of our errors

stemmed from gene boundaries and addressed this issue in
several ways. We removed genes containing mismatched
parentheses from our results. We also found that we ob-
tained different boundaries when we ran the classifier for-
wards versus backwards (reversing the order of the words)
and obtained a significant improvement by simply combin-
ing the two sets of results and then keeping only the shorter
entity in cases where one entity was a substring of another.
We found that this postprocessing was highly valuable and
added approximately 1% to our f-score. For BioNLP, we
found that postprocessing was not useful because running
the classifier forwards produced poor results and because
mismatched parentheses were less of a problem.

4. Results and Analysis

Precision Recall F-Score

gene/protein 82.8 83.5 83.2

Table 2: Results for BioCreative

Precision Recall F-Score

protein 77.4 68.5 72.7
DNA 66.2 69.6 67.9
RNA 72.0 65.9 68.8
cell line 59.0 47.1 52.4
cell type 62.6 77.0 69.1

Overall 71.62 68.6 70.1

Table 3: Results for BioNLP

The performance of the system in both tasks is shown
in Tables 2 and 3; the system gets an overall f-score of
83.2 for the BioCreative NER task and 70.1 for the BioNLP
task. Our system compared well with other systems in the
BioCreative evaluation; results from the BioNLP evalua-
tion are forthcoming. Comparison to other results pub-
lished on GENIA NE subsets is difficult because groups
choose different subsets of GENIA entities and often eval-
uate on private corpora. (Shen et al., 2003) reports an f-
score of 66 on a 24-NE task using version 3 of GENIA
to evaluate. (Collier et al., 2000) and (Koichi and Collier,
2003) attempt a 10-NE task using a private corpus to evalu-
ate and report f-scores of 74 and 73. We have analyzed our
sources of error for both BioCreative and BioNLP in depth
in (Dingare et al., 2004) and (Finkel et al., 2004); these in-
clude a large percentage of boundary errors (over 30% for
both tasks), a smaller number of errors due to coordination,
and some errors due to acronyms and tokens whose ortho-
graphic form might suggest they were entities but were in

fact measures or belonged to other entity categories; also a
number of errors due to low-frequency words or words not
encountered in the training data. However, we would like
to focus here on the quality of training and evaluation data
as a key factor leading to low performance.

The 13-point discrepancy between performance in
BioCreative and BioNLP might be partially explained by
the varying task difficulty: BioNLP requires recognition of
5 entities while BioCreative requires only 1; BioNLP also
requires disambiguation of systematically ambiguous gene
and protein names. However, task difficulty does not appear
to be the primary factor leading to lower performance. To
demonstrate this, we evaluated the system’s performance
on the BioNLP data for the task of identifying a single class.
When we eliminated the “cell line” and “cell type” cate-
gories and combined the “DNA” “RNA” and “protein” cat-
egories into a single class, we obtained an f-score of 74.4.
This figure is substantially below the performance of 83.2
obtained for the roughly equivalent “NEWGENE” class in
BioCreative. Rather than task difficulty, lower performance
in BioNLP stems from higher inconsistency in the annota-
tion of the BioNLP data. In saying this, we refer not only to
errors in the evaluation data which resulted in lower scores
but equally to inconsistencies in the training data which
caused the system to learn incorrect patterns. Two of the
authors independently reviewing 50 of the system’s errors
found that 34-35 of these could be attributed to inconsis-
tent annotation of the training or evaluation data. We are
not biologists; we based our judgments of inconsistency on
similarity of context. However, the example pairs we list
below are so similar that we do not think the annotation
inconsistencies are due to biological subtleties.

4.1. Data Annotation

Approximately one-third of the system’s errors were
due to highly variable annotation of frequent terms such
as lymphocyte, T cell and B-cell; these were variously an-
notated as “cell type” and as “O” (i.e. not in an entity). In
example (1) below from the evaluation data our system la-
belled lymphocytes as a “cell type” and was penalized for a
FP. However, our annotation is consistent with example (2)
which appeared only two sentences later in the evaluation
data; lymphocytes is annotated as a “cell type” there.

(1) ...content of cAMP was also decreased in lympho-
cytes by 33% .

(2) ...simultaneous alteration in the cAMP content was
observed in lymphocytes.

Parallel problems occurred with the frequent terms hor-
mone and receptor which were variously annotated as “pro-
tein” and “O”. In example (3) from the evaluation data our
system labelled receptors as “O” rather than “protein” and
was penalized for a FN; however our annotation mirrors ex-
ample (4) which appeared in the training data.

(3) Concentration of the receptors to 1.25 ( OH ) 2D3
was elevated up to 39.7 fmolemg after I week...

(4) Concentration of receptors of hormonal form of 1 ,
25 ( OH ) 2D3 was found to be minimal...



In a smaller proportion of cases entities were variably
annotated either “DNA” or “protein”. In example (5) below
which appeared in the evaluation data kappa B enhancer
was labelled as “protein” while in example (6) which ap-
peared in the training data it was labelled as “DNA”. Vari-
ation in labelling between “DNA” and “protein” also oc-
curred with enhancer elements.

(5) These kappa B-specific proteins...interact with the
functional kappa B enhancer present in the IL-2R
alpha promoter .

(6) ...nuclear NF-kappa B is necessary to activate the
kappa B enhancer...

Inconsistent annotation of premodifiers also caused a
small number of errors. In examples (7), (9), and (11)
which appeared in the evaluation data, the modifiers hu-
man, inducible, and unrearranged were included in the en-
tities “DNA”, “protein”, and “DNA”, respectively, while in
the parallel examples (8), (10), and (12) which appeared in
the training data, they were excluded. Our system left out
the modifiers as in the training data and was penalized for
both FPs and FNs.

(7) Kappa B-specific DNA binding proteins: role in the
regulation of human interleukin-2 gene expression.

(8) Instead , signal transduction to the human IL-2 gene
became disrupted .

(9) Mutation of a kappa B core sequence...blocks the
specific binding of two inducible cellular factors.

(10) [Sequence analysis revealed] several putative bind-
ing sequences for inducible transcription factors...

(11) Different fragments of unrearranged human vari-
able region...were used for...in vitro transcription....

(12) ...hGATA-3 may be involved in the regulation of the
unrearranged TcR delta gene expression....

Some cases of inconsistent annotation were due to can-
cer terms such as neoplasm, tumor, and carcinoma which
were annotated either as “cell type” or “O”; we assume
that this is because these terms are ambiguous between cell
types and disease names.

(13) ...the authors studied specimens of breast carcino-
mas from 60 consecutive female patients.

(14) Inflammatory infiltrates were analysed in tissue
sections of 76 breast carcinomas...

There was also uncertainty as to whether gene systems,
core sequences, and stretches of DNA described by numer-
ical location (e.g. -206 to -195) should count as “DNA”
entities. Finally, there was highly variable annotation of
coordination.

Overall, the quality of data in the BioCreative evalua-
tion appeared to be significantly higher and did not feature
the systematic inconsistencies of the BioNLP data (keep-
ing in mind that the BioCreative annotation task was also
significantly easier). BioCreative’s innovation of enumer-
ating several alternate correct boundaries reduced spurious

boundary errors. However, there were some inconsisten-
cies in the BioCreative data as well. In a few cases organ-
ism names appearing in prepositional phrases after gene
names were annotated as if they were premodifiers (as in
(15)) while in other cases they were not (as in (16)).

(15) Transcriptional regulation of SUP35 and SUP45 in
Saccharomyces cerevisiae

(16) Expression of the...protein Bax under the control
of a GAL10 promoter in Saccharomyces cerevisiae
resulted in...

The annotation of mutations was also inconsistent - the
participants were given instructions not to annotate muta-
tions as genes and were given the example p53 mutations;
but in the training data there were 25 instances of mutations
annotated as genes, including p53 mutations.

4.2. Improving Biomedical Annotation

That the task of biomedical NER is more difficult than
NER in the traditional newswire domain (with its stan-
dard entities of “PERSON”, “LOCATION” and “ORGA-
NIZATION”) is obvious from the numbers; the highest
score in the CoNLL 2003 NER task (Sang and De Meul-
der, 2003) (which used the same scoring metric as BioNLP
and BioCreative) was 88.8%, five points higher than the
highest score in BioCreative, and 18 points higher than our
score in BioNLP. What must be noted is that the difficulty
of the domain has an effect both on the annotation of the
data as well as on the performance of the system. In a
difficult domain where language is convoluted and names
are long and complex, data annotation is more difficult.
This is demonstrated by results on interannotator agree-
ment – while interannotator agreement for the MUC-7 NER
task in the newswire domain was measured at 97% (Marsh
and Perzanowski, 1998), the few studies of interannotator
agreement in the biomedical domain have shown interan-
notator agreement to be substantially lower, with f-scores
in the range of 0.87 (Hirschman, 2003) to 0.89 (Demetriou
and Gaizauskas, 2003). In order to accurately represent the
state of progress in biomedical NER, evaluations must fo-
cus as much on improving biomedical data annotation as
on improving systems. We note that while the use of anno-
tation guidelines has become standard practice particularly
for complex annotation tasks, the annotation of the BioCre-
ative data did not use annotation guidelines. We also know
of no guidelines used in the annotation of the GENIA data
used in the BioNLP task. The adoption of annotation guide-
lines in a domain notorious for its complexity and where
interannotator agreement is known to be low seems to be a
promising direction for improvement.

Annotation guidelines must address the proper annota-
tion of premodifiers, constructing rules to distinguish the
premodifiers that are necessary to annotate. They must
also specify how to annotate coordinated entities, distin-
guishing between the varieties of coordinations. Next, they
must establish whether to annotate high-level categories. It
may be that the variability in the annotation of words like
receptor and hormone was due to the fact that receptors
and hormones are types of protein containing thousands of



instances. Finally, annotation guidelines must decide am-
biguous cases of class membership such as whether DNA
sequences are examples of “DNA” entities and whether tu-
mors are “cell types”.

5. Conclusions
We have presented a machine learning system for

biomedical NER and presented its performance in the two
biomedical NER evaluations to date. Our system’s rich fea-
ture set including exhaustive use of local features and a va-
riety of external resources leads to state-of-the-art perfor-
mance. Our system also adapts rapidly to new NE sets as
illustrated by our adaptation to the BioNLP task.

Unfortunately, state-of-the-art-performance in biomed-
ical NER continues to lag behind the high-eighties figures
that the field has come to expect. The BioNLP organizers
may have had this gap in mind when they emphasized that
participants should focus on deep knowledge sources such
as coreference resolution and use of dependency relations
over “widely used lexical-level features (POS, lemma, or-
thographic, etc.)”. However, both BioNLP and BioCreative
showed that external resources led to improvements of only
1-2%. Our error analysis showed that consistent annota-
tion might have led to a 70% reduction in error rate. While
the proper exploitation of external resources and deep pro-
cessing remains an avenue to be explored, we believe it
cannot compare to the gains that might result from consis-
tently annotated data. The challenge for future evaluations
is to use and publish annotation guidelines, to measure and
report figures for interannotator agreement, and to pursue
improvements in annotation of biomedical data alongside
improvements in systems.
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