
Towards an Alternative Implementation of NXT’s Query Language via
XQuery

Neil Mayo, Jonathan Kilgour, and Jean Carletta
University of Edinburgh

Abstract

The NITE Query Language (NQL) has
been used successfully for analysis of a
number of heavily cross-annotated data
sets, and users especially value its ele-
gance and flexibility. However, when us-
ing the current implementation, many of
the more complicated queries that users
have formulated must be run in batch
mode. For a re-implementation, we re-
quire the query processor to be capable
of handling large amounts of data at once,
and work quickly enough for on-line data
analysis even when used on complete cor-
pora. Early results suggest that the most
promising implementation strategy is one
that involves the use of XQuery on a mul-
tiple file data representation that uses the
structure of individual XML files to mirror
tree structures in the data, with redundancy
where a data node has multiple parents in
the underlying data object model.

1 Introduction

Computational linguistics increasingly requires
data sets which have been annotated for many dif-
ferent phenomena which relate independently to
the base text or set of signals, segmenting the data
in different, conflicting ways. The NITE XML
Toolkit, or NXT (Carletta et al., 2003), has been
used successfully on a range of text, spoken lan-
guage, and multimodal corpora to provide and
work with data of this character. Because the orig-
inal motivation behind it was to make up for a
dearth of tools that could be used to hand-annotate
and display such data, the initial implementation
of data search was required to work well on one

data observation at a time — that is, one text, dia-
logue, or other language event — and to be usable
but slow on multiple observations. However, the
clear and flexible design of NXT’s query language,
NQL (Heid et al., 2004; Carletta et al., in press),
makes it attractive for larger-scale data analysis,
and a number of users have up-translated exist-
ing data for the express purpose of improving their
search options.

We are now in the process of devising a strategy
for re-implementing the NQL processor to serve
the needs of this class of user better. In this paper,
we describe our requirements for the new imple-
mentation, outline the various implementation op-
tions that we have, and give early results suggest-
ing how well they meet our requirements. NQL
is arguably the most mature of the current special-
purpose facilities for searching data sets where the
data is not structured as a single tree, and there-
fore experiences with implementing it are likely
to provide lessons for search facilities that are still
to come.

2 NXT and the NITE Query Language

NXT is designed specifically for data sets with
multiple kinds of annotation. It requires data to be
represented as a set of XML files related to each
other using stand-off links, with a “metadata” file
that provides two things: a catalogue of files con-
taining the audio or video signals used to capture
an observation together with the annotations that
describe them, and a specification of the corpus
design that describes the annotations and how they
relate to each other and to signal. Text corpora
are treated as signal-less, with the text as a base
level of “annotation” to which other annotations
can point. Given data of this type, NXT provides
Java libraries for data modelling and search as well

mailto:J.Carletta@ed.ac.uk

as for building graphical user interfaces that can be
used to display annotations in synchrony with the
signals. NXT also comes with a number of fin-
ished GUIs for common tasks, some of which are
specific to existing data sets and some of which
are configurable to new corpus designs. NXT sup-
ports data exploration using a search GUI, callable
from any tool, that will run an NQL query and
highlight results on the tool’s display. Data search
is then usually done using one of a battery of com-
mand line utilities, that, for instance, count results
matching a given query or provide tab-delimited
output describing the query matches.

Because the data model and query language for
a tool are critical to our implementation choices,
we briefly describe them, as well as the current
NQL implementation.

2.1 NXT’s data handling

In NXT, annotations are described by types and
attribute value pairs, and can relate to a synchro-
nized set of signals via start and end times, to
representations of the external environment, and
to each other. Annotations can describe the be-
haviour of a single ‘agent’, if more than one par-
ticipant is involved for the genre being coded, or
they can describe the entire language event; the
latter possibility is used for annotating written text
as well as for interaction within a pair or group
of agents. The data model ties the annotations
together into a multi-rooted tree structure that is
characterized by both temporal and structural or-
derings. Additional relationships can be overlaid
on this structure using pointers that carry no order-
ing implications. The same basic data objects that
are used for annotations are also used to build sets
of objects that represent referents from the real
world, to structure type ontologies, and to provide
access to other external resources stored in XML,
resulting in a rich and flexible system.

Data is stored in a “stand-off” XML representa-
tion that uses the XML structure of individual files
to mirror the most prominent trees in the data it-
self, forming ‘codings’ of related annotations, and
pointers between files (represented byXLinks)
for other relationships. For example, the markup

<nt nite:start="1.8" nite:end="2.3"

cat="NP" nite:id="s1 506" wc="2">

<nite:child href="a1.words.xml#id(s1 6)"/>

<nite:child href="a1.words.xml#id(s1 7)"/>

</nt>

represents a noun phrase in a syntactic tree,
pointing to two words in a different file which con-
stitute the content of that syntactic structure.

This has the useful properties of allowing cor-
pus subsets to be assembled as needed; making it
easy to import annotations without perturbing the
rest of the data set; and keeping each individual
file simple to use in external processing. For in-
stance, the words for a single speaker can be stored
in a single file that contains no other data, mak-
ing it easy to pass through to a part-of-speech tag-
ger. NXT itself provides transparent corpus-wide
access to the data, and so tool users need not un-
derstand how the data is stored. A ‘metadata’ file
defines the structures of the individual files and
the relationships among them, as well as detail-
ing where to find the data and signals on the file
system.

2.2 NXT’s query language

Search is conducted in NXT by means of a dedi-
cated query language, NQL. A simple query finds
n-tuples of data objects (annotations and objects)
that satisfy certain conditions. The query expres-
sion consists of two parts, separated by a colon (:).
In the first part, variables representing the data ob-
jects are declared. These either match all data ob-
jects (e.g. ‘($x)’ for a variable named ‘$x’) or are
constrained to draw matches from a designated set
of simple types (e.g. ‘($w word‖ sil)’, matching
data objects of the simple types ‘word’ or ‘sil’).
The second part of the query expression specifies
a set of conditions that are required to hold for a
match, which are combined using negation (logi-
cal not, ‘!’), conjunction (logical and, ‘&&’), and
disjunction (logical or, ‘‖’). Queries return a struc-
ture that for each match lists the variables and ref-
erences the data objects they matched.

NQL has operators that allow match conditions
to be expressed for each of the essential properties
of a data object such as its identity, its attribute-
value pairs, its textual content, its timing, and its
relationships via the two types of structural links
(child and pointer). The attribute and textual con-
tent tests include the ability to match against either
the existence or the value of the attribute.

Attribute values or textual content can be tested
against explicit values or values of other attributes,
using equality, inequality, and the usual ordering
tests (conventionally represented as<, <=, >=,
and>). String values can also be tested against

regular expressions.
The temporal operators include the ability to

test whether a data object has timing information,
and to compare the start or end time with a given
point in time. The query language also has opera-
tors to test for some common timing relationships
between two data objects, such as overlap.

The structural operators test for dominance,
precedence, and pointer relationships. Precedence
can be tested against all of the orderings in the
overlapping annotations.

In addition, identity tests can be used to avoid
matches where different variables point to the
same data object. It is also possible in NQL to
‘bind’ variables within the query using existential
(‘exists’) and universal (‘forall’) quantifiers in the
variable declarations (which have the same mean-
ing as in first-order logic). Such bound variables
are not returned in the query result.

NXT also supports the sequencing of queries
into a ‘complex’ query using a double colon (::)
operator. The results for a complex query are re-
turned not as a flat list but as a tree structure. For
example, in a corpus of timed words from two
speakers, A and B,

($wa word):($wa@agent = "A")::

($wb word):($wb@agent="B") && ($wa

overlaps.with $wb)

will return a tree showing word overlaps; under-
neath each top level node, representing an overlap-
ping word from speaker A, will be a set of nodes
representing the words from speaker B that over-
lap that word of speaker A.

2.3 Comparison to other search facilitiies

The kinds of properties that linguists wish to use
in searching language data are cumbersome to ex-
press in general-purpose query languages. For
this reason, there are a number of other query
languages designed specifically for language cor-
pora, some of which are supported by implemen-
tation. LPath (Bird et al., 2006) and tgrep2 (Ro-
hde, nd) assume the data forms one ordered tree.
TigerSearch (Tiger Project, nd) is primarily for
single trees, but does allow some out-of-tree re-
lationships; the data model includes “secondary
edges” that link a node to an additional parent and
that can be labelled, with query language opera-
tors that will test for the presence or absence of
such an edge, with or without a specific label. AT-
LAS (National Institute of Standards and Technol-

ogy, 2000) intends a query language over richer
structures, but the structures and query language
are still under development.

3 Requirements

We already have a successful NQL implementa-
tion as part of NXT, NXT Search. However, as
always, there are a number of things that could
be improved about it. We are considering a re-
implementation with the following aims in mind:

Faster query execution.Although many queries
run quite quickly in NXT Search, more com-
plicated queries can take long enough to ex-
ecute on a large corpus that they have to be
scheduled overnight. This is partially due
to the approach of checking every possible
combination of the variables declared in the
query, resulting in a large search space for
some queries. Our aim is to have the vast
majority of queries that exploit NXT’s multi-
rooted tree structure run quickly enough on
single observations that users will be happy
to run them in an interactive GUI environ-
ment.

The ability to load more data. NXT loads data
into a structure that is 5-7 times the size of
the data on disk. A smaller memory repre-
sentation would allow larger data sets to be
loaded for querying. Because it has a “lazy”
implementation that only loads annotations
when they are required, the current perfor-
mance is sufficient for many purposes, as this
allows all of the annotations relating a single
observation to be loaded unless the observa-
tion is both long and very heavily annotated.
It is too limited (a) when the user requires a
query to relate annotations drawn from dif-
ferent observations, for instance, as a conve-
nience when working on sparse phenomena,
or when working on multiple-document ap-
plications such as the extraction of named en-
tities from newspaper articles; (b) for queries
that draw on very many kinds of annotation
all at the same time on longer observations;
and (c) when the user is in an interactive en-
vironment such as a GUI using a wide range
of queries on different phenomena. In the last
case, our goal could be achieved by memory
management that throws loaded data away in-
stead of increasing the loading capacity.

4 XQuery as a Basis for
Re-implementation

XQuery (Boag et al., 2005), currently a W3C
Candidate Recommendation, is a Turing-complete
functional query/programming language designed
for querying (sets of) XML documents. It sub-
sumes XPath, which is “a language for addressing
parts of an XML document” (Clark and DeRose,
1999). XPath supports the navigation, selection
and extraction of fragments of XML documents,
by the specification of ‘paths’ through the XML
hierarchy. XQuery queries can include a mixture
of XML, XPath expressions, and function calls;
and also FLWOR expressions, which provide var-
ious programmatical constructs such asfor, let,
where, orderby andreturn keywords for loop-
ing and variable assignment. XQuery is designed
to make efficient use of the inherent structure of
XML to calculate the results of a query.

XQuery thus appears a natural choice for query-
ing XML of the sort over which NQL oper-
ates. Although the axes exposed in XPath al-
low comprehensive navigation around tree struc-
tures, NXT’s object model allows individual nodes
to draw multiple parents from different trees that
make up the data; expressing navigation over this
multi-tree structure can be cumbersome in XPath
alone. XQuery allows us to combine fragments of
XML, selected by XPath, in meaningful ways to
construct the results of a given query.

There are other possible implementation op-
tions that would not use XQuery. The first of these
would use extensions to the standard XPath axes
to query concurrent markup, as has been demon-
strated by (Iacob and Dekhtyar, 2005). We have
not yet investigated this option.

The second is to come up with an indexing
scheme that allows us to recast the data as a rela-
tional database, the approach taken in LPath (Bird
et al., 2006). We chose not to explore this option.
It is not difficult to design a relational database to
match a particular NXT corpus as long as editing
is not enabled. However, a key part of NXT’s data
model permits annotations to descend recursively
through different layers of the same set of data
types, in order to make it easy to represent things
like syntax trees. This makes it difficult to build a
generic transform to a relational database - such a
transform would need to inspect the entire data set
to see what the largest depth is. It also makes it im-
possible to allow editing, at least without placing

some hard limit on the recursion. It is admittedly
true that any strategy based on XQuery will also
be limited to static data sets for the present, but
update mechanisms for XQuery are already begin-
ning to appear and are likely to become part of
some future standard.

5 Implementation Strategy

In our investigation, we compare two possible im-
plementation strategies to NXT Search, our exist-
ing implementation.

5.1 Using NXT’s stand-off format

The first strategy is to use XQuery directly on
NXT’s stand-off data storage format. The bulk of
the work here is in writing libraries of XQuery
functions that correctly interpret NXT’s stand-
off child links in order to allow navigation over
the same primary axes as are used in XPath,
but with multiple parenthood, and operating over
NXT’s multiple files. The libraries can resolve the
XLink s NXT uses both forwards and backwards.
Backwards resolution requires functions that ac-
cess the corpus metadata to find out which files
could contain annotations that could stand in the
correct relationship to the starting node. Built on
top of this infrastructure would be functions which
implement the NQL operators.

Resolving ancestors is a rather expensive opera-
tion which involves searching an entire coding file
for links to a node with a specified identity. Ad-
ditionally, if a query includes variables which are
not bound to a particular type, this precludes the
possibility of reducing the search space to particu-
lar coding files.

A drawback to using XPath to query a hierar-
chy which is serialised to multiple annotation files,
is that much of the efficiency of XPath expres-
sions can be lost through the necessity of resolving
XLinks at every child or parent step of the expres-
sion. This means that even the descendant and an-
cestor axes of XPath may not be used directly but
must be broken down into their constituent single-
step axes.

In addition to providing a transparent interface
for navigating the data, it may be necessary to pro-
vide additional indexing of the data, to increase ef-
ficiency and avoid the duplication of calculations.
An alternative is to overcome the standoff nature
of the data by resolving links explicitly, as de-
scribed in the following section.

5.2 Using a redundant data representation

The second strategy makes use of the classic trade-
off between memory and speed by employing a
redundant data representation that is both easy to
calculate from NXT’s data storage format and en-
sures that most of the navigation required exer-
cises common parts of XPath, since these are the
operations upon which XQuery implementations
will have concentrated their resources.

The particular redundancy we have in mind re-
lies on NXT’s concept of “knitting” data. In
NXT’s data model, every node may have multi-
ple parents, but only one set of children. Where
multiple parents exist, at most one will be in the
same file as the child node, with the rest connected
by XLinks . “Knitting” is the process of starting
with one XML file and recursively following chil-
dren and child links, storing the expanded result
as an XML file. The redundant representation we
used is then the smallest set of expanded files that
contains within it every child link from the origi-
nal data as an XML child. .

Although this approach has the advantage of us-
ing XPath more heavily than our first approach,
it has the added costs of generating the knitted
data and handling the redundancy. The knitting
stylesheet that currently ships with NXT is very
slow, but a very fast implementation of the knit-
ting process that works with NXT format data has
been developed and is expected as part of an up-
coming LTXML release (University of Edinburgh
Language Technology Group, nd). The cost of
dealing with redundancy depends on the branch-
ing structure of the corpus. To date, most corpora
with multiple parenthood have a number of quite
shallow trees that do not branch themselves but all
point to the same few base levels (e.g. orthogra-
phy), suggesting we can at least avoid exponential
expansion.

6 Tests

For initial testing, we chose a small set of queries
which would allow us to judge potential imple-
mentations in terms of whether they could do ev-
erything we need to do, whether they would give
the correct results, and how they would perform
against our stated requirements. This allows us to
form an opinion whilst only writing portions of the
code required for a complete NQL implementa-
tion. Our set of queries is therefore designed to in-
volve all of the basic operations required to exploit

NXT’s ability to represent multi-rooted trees and
to traverse a large amount of data, so that they are
computationally expensive and could return many
results. In the tests, we ran the queries over the
NXT translation for the Penn Treebank syntax an-
notated version of one Switchboard dialogue (Car-
letta et al., 2004), sw4114. The full dialogue is ap-
proximately 426Kb in physical size, and contains
over 1101 word elements.

6.1 Test queries

Our test queries were as follows.

• Query 1 (Dominance):
(exists $e nt)($w word):
$e@cat="NP" && $eˆ$w
(words dominated by an NP-category nt)

• Query 2 (Complex query with precedence
and dominance):
($w1 word)($w2 word):
TEXT($w1)="the" && $w1<>$w2
::
(exists $p nt): $p@cat="NP"
&& $pˆ$w1 && $pˆ$w2
(word pairs where the word “the” precedes
the second word with respect to a common
NP dominator)

• Query 3 (Eliminative):
($a word)(forall $b
turn):!($bˆ$a)
(words not dominated by any turn)

In the data, the category “nt” represents syntac-
tic non-terminals. The third query was chosen be-
cause it is particularly slow in the current NQL im-
plementation, but is easily expressed as a path and
therefore is likely to execute efficiently in XPath
implementations.

Although NXT’s object model also allows for
arbitrary relationships between nodes using point-
ers with named roles, increasing speed for queries
over them is only a secondary concern, and we
know that implementing operators over them is
possible in XQuery because it is very similar to re-
solving stand-off child links. For this reason, none
of our test queries involve pointers.

6.2 Test environment

For processing XQuery, we used Saxon
(www.saxonica.com), which provides an API
so that it can be called from Java. There are

several available XQuery interpreters, and they
will differ in their implementation details. We
chose Saxon because it appears to be most
complete and is well-supported. Alternative
interpreters, Galax (www.galaxquery.org) and
Qexo (www.gnu.org/software/qexo/), provided
only incomplete implementations at the time of
writing.

6.3 Comparability of results

It is not possible in a test like this to produce com-
pletely comparable results because the different
implementation strategies are doing very different
things to arrive at their results. For example, con-
sider our second query. Apart from some primitive
optimizations, on this and all queries, NXT Search
does an exhaustive search of all possiblek-tuples
that match the types given in the query, varying
the rightmost variable fastest. Our XQuery imple-
mentation on stand-off data first finds matches to
$w1, $w2, and $np; then calls a function that cal-
culates the ancestries for matches to $w1 and $w2;
for each ($w1, $w2) pair, computes the intersec-
tion of the two ancestries; and finally filters this
intersection against the list of $np matches.

On the other hand, the implementation on the
knitted data is shown in figure 1. It first sets vari-
ables representing the XML document containing
our knitted data and all distinct nt elements within
that document which both have a category at-
tribute “NP” and have furtherword descendants.
It then sets a variable to represent the sequence of
results. The results are calculated by taking each
NP-type element and checking itsword descen-
dants for those pairs where a word “the” precedes
another word. The implementation also applies
the condition that theNP-type element must not
have anotherNP element as an ancestor — this
is to remove duplicates introduced by the way we
find the initial set ofNPs.

In addition to the execution strategies, the meth-
ods used to start off processing were quite differ-
ent. For each of the implementations, we did what-
ever gave the best performance. For the XQuery-
based implementations, this meant writing a Java
class to start up a static context for the execution
of the query and reusing it to run the query repeat-
edly. For NXT, it meant using a shell script to run
the command-line utilitySaveQueryResults
repeatedly on a set of observations, exiting each
time.

Figure 1: An XQuery rewritten for knitted data;
containing more direct XPath expressions.
let $doc := doc(“data/knitted/swbd/sw4114.syntax.xml”),

$nps := $doc//nt[@cat=“NP”][descendant::word] union (),

$result := (

for $np in $nps return (

let $w2 := $np//word, $w1 := $w2[text()=“the”]

for $a in $w1, $b in $w2

where (struct:node-precedes($a, $b)

and not($np/ancestor::nt[@cat=“NP”]))

(: only return for the uppermost common NP ancestor :)

return (element match{$a, $b})

)

) union ()

return element result{attribute count count($result), $result}

Our aim in performing the comparison is to as-
sess what ispossiblein each approach rather than
to do the same thing in each, and this is why
we have attempted to achieve best possible per-
formance in each context rather than making the
conditions as similar as possible. In all cases, the
figures we report are the mean timings over five
runs of what the Linuxtime command reports as
‘real’ time.

7 Speed Results

The results of our trial are shown in the follow-
ing table. Timings which are purely in seconds
are given to 2 decimal places; those which extend
into the minutes are given to the nearest second.
“NXT” means NXT Search; “XQ” is the condi-
tion with XQuery using stand-off data; and “XQ-
K” is the condition with XQuery using the redun-
dant knitted data.

Query

Impl
Q1 Q2 Q3

NXT 3.38s 1m24 18.25s
XQ 10.21s 3m24 14.42s
XQ-K 2.03s 2.17s 2.47s

Although it would be wrong to read too much
into our simple testing, these results do suggest
some tentative conclusions. The first is that us-
ing XQuery on NXT’s stand-off data format is
unlikely to increase execution speed except for
queries that are computationally very expensive
for NXT, and may decrease performance for other
queries. If users show any tolerance for delays,
it is more likely to be for the delays to the for-
mer, and therefore this does not seem a winning

strategy. On the other hand, using XQuery on the
knitted data provides useful (and sometimes im-
pressive) gains across the board.

It should be noted that our results are based
upon a single XQuery implementation and are
inevitably implementation-specific. Future work
will also attempt to make comparisons with al-
ternatives, including those provided by XML
databases.

7.1 Memory results

To explore our second requirement, the ability to
load more data, we generated a series of corpora
which double in size from an initial set of 4 chil-
dren with 2 parents.

We ran both NXT Search and XQuery in Saxon
on these corpora, with the Java Virtual Machine
initialised with increasing amounts of memory,
and recorded the maximum corpus size each was
able to handle. Both query languages were exer-
cised on NXT stand-off data, with the simple task
of calculating parent/child relationships. Results
are shown in the following table.

Max corpus size

(nodes, disk space)

Mem Mb NXT XQuery/Saxon

500 3 ∗ 217, 28Mb 3 ∗ 219, 111Mb
800 3 ∗ 218, 56Mb 3 ∗ 220, 224Mb
1000 3 ∗ 218, 56Mb 3 ∗ 220, 224Mb

These initial tests suggest that at its best, the
XQuery implementation in Saxon can manage
around 4 times as much data as NXT Search. It
is interesting to note that the full set of tests took
about 19 minutes for XQuery, but 18 hours for
NXT Search. That is, Saxon appears to be far
more efficient at managing large data sets. We
also discovered that the NXT results were differ-
ent when a different query was used; we hope to
elaborate these results more accurately in the fu-
ture.

We did not specifically run this test on the im-
plementation that uses XQuery on knitted data be-
cause the basic characteristics would be the same
as for the XQuery implementation with stand-off
data. The size of a knitted data version will de-
pend on the amount of redundancy that knitting
creates. Knitting has the potential to increase the
amount of memory required greatly, but it is worth
noting that it does not always do so. The knit-
ted version of the Switchboard dialogue used for
these tests is actually smaller than the stand-off

version, because the original stand-off stores ter-
minals (words) in a separate file from syntax trees
even though the terminals are defined to have only
one parent. That is, there can be good reasons for
using stand-off annotation, but it does have its own
costs, asXLinks take space.

7.2 Query rewriting

In the testing described far, we used the existing
version of NXT Search. Rather than writing a new
query language implementation, we could just in-
vest our resources in improvement of NXT Search
itself. It is possible that we could change the un-
derlying XML handling to use libraries that are
more memory-efficient, but this is unlikely to give
real scalability. The biggest speed improvements
could probably be made by re-ordering terms be-
fore query execution. Experienced query authors
can often speed up a query if they rewrite the terms
to minimize the size of the search space, assuming
they know the shape of the underlying data set.
Although we do not yet have an algorithm for this
rewriting, it roughly involves ignoring the “exists”
quantifier, splitting the query into a complex one
with one variable binding per subquery, sequenc-
ing the component queries by increasing order of
match set size, and evaluating tests on the earli-
est subquery possible. For example, consider the
query

($w1 word):text($w1)="the" ::

($p nt):$p@cat eq "NP" && $pˆ$w1 ::

($w2 word): $pˆ$w2 && $w1 < > $w2

This query, which bears a family resemblance
to query 2, takes 4.31s, which is a considerable
improvement. Of course, the result tree is a dif-
ferent shape from the one specified in the origi-
nal query, and so this strategy for gaining speed
improvements would incur the additional cost of
rewriting the result tree after execution.

7.2.1 Discussion

Our testing suggests that if we want to make
speed improvements, creating a new NQL imple-
mentation that uses XQuery on a redundant data
representation is a good option. Although not
the result we initially expected, it is perhaps un-
surprising. This XQuery implementation strat-
egy draws more heavily on XPath than the stand-
off strategy, and XPath is the most well-exercised
portion of XQuery. The advantages do not just
come from recasting our computations as opera-
tions over trees. XPath allows us, for instance, to

write a single expression that both binds a vari-
able and performs condition tests on it, rather than
requiring us to first bind the variable and then
loop through each combination of nodes to deter-
mine which satisfy the constraints. Using a re-
dundant data representation increases memory re-
quirements, but the XQuery-based strategies use
enough less memory that the redundancy in itself
will perhaps not be an issue. In order to settle this
question, we must think more carefully about the
size and shape of current and potential NXT cor-
pora.

Our other option for making speed improve-
ments is to augment NXT Search with a query
rewriting strategy. This needs further evalua-
tion because the improvements will vary widely
with the query being rewritten, but our initial test
worked surprisingly well. However, augmenting
the current NXT Search in this way will not reduce
its memory use, and it is not clear whether this im-
provement can readily be made by other means.

Acknowledgments

This work has been funded by a grant from Scot-
tish Enterprise via the Edinburgh-Stanford Link.
We are grateful to Stefan Evert for designing NQL
and for discussing its specification with us, and
to Jan-Torsten Milde and Felix Sasaki for mak-
ing available to us their own initial experiments
suggesting that this re-implementation would be
worth attempting.

References

[Bird et al.2006] Steven Bird, Yi Chen, Susan David-
son, Haejoong Lee, and Yifeng Zheng. 2006. De-
signing and evaluating an XPath dialect for linguis-
tic queries. In22nd International Conference on
Data Engineering, Atlanta, USA.

[Boag et al.2005] Scott Boag, Don Chamberlin,
Mary F. Fernandez, Daniela Florescu, Jonathan
Robie, Jrme Simon, and Mugur Stefanescu. 2005.
Xquery 1.0: An XML Query Language, November.
http://www.w3.org/TR/xquery/; accessed 18 Jan 06.

[Carletta et al.2003] J. Carletta, Stefan Evert, Ulrich
Heid, Jonathan Kilgour, Judy Robertson, and Holger
Voormann. 2003. The NITE XML Toolkit: flexible
annotation for multi-modal language data.Behav-
ior Research Methods, Instruments, and Computers,
35(3):353–363.

[Carletta et al.2004] Jean Carletta, Shipra Dingare,
Malvina Nissim, and Tatiana Nikitina. 2004. Us-
ing the NITE XML Toolkit on the Switchboard Cor-

pus to study syntactic choice: a case study. In
Fourth Language Resources and Evaluation Confer-
ence, Lisbon, Portugal.

[Carletta et al.in press] J. Carletta, S. Evert, U. Heid,
and J. Kilgour. in press. The NITE XML Toolkit:
data model and query language.Language Re-
sources and Evaluation Journal.

[Clark and DeRose1999] James Clark and Steve
DeRose. 1999. Xml path language (xpath) version
1.0, 16 November. http://www.w3.org/TR/xpath;
accessed 18 Jan 06.

[Heid et al.2004] Ulrich Heid, Holger Voormann, Jan-
Torsten Milde, Ulrike Gut, Katrin Erk, and Sebastian
Pad. 2004. Querying both time-aligned and hierar-
chical corpora with NXT Search. InFourth Lan-
guage Resources and Evaluation Conference, Lis-
bon, Portugal.

[Iacob and Dekhtyar2005] Ionut E. Iacob and Alex
Dekhtyar. 2005. Towards a query language for
multihierarchical xml: Revisiting xpath. InEighth
International Workshop on the Web and Databases
(WebDB 2005), Baltimore, Maryland, USA, 16-17
June.

[National Institute of Standards and Technology2000]
National Institute of Standards and
Technology. 2000. ATLAS Project.
http://www.nist.gov/speech/atlas/; last update 6
Feb 2003; accessed 18 Jan 06.

[Rohdend] Doug Rohde. n.d. Tgrep2.
http://tedlab.mit.edu/ dr/Tgrep2/; accessed 18
Jan 06.

[Tiger Projectnd] Tiger Project. n.d. Linguistic inter-
pretation of a German corpus. http://www.ims.uni-
stuttgart.de/projekte/TIGER/; last update 17 Nov
2003; accessed 1 Mar 2004.

[University of Edinburgh Language Technology Groupnd]
University of Edinburgh Language Tech-
nology Group. n.d. LTG Software.
http://www.ltg.ed.ac.uk/software/; accessed 18
Jan 2006.

	Introduction
	NXT and the NITE Query Language
	NXT's data handling
	NXT's query language
	Comparison to other search facilitiies

	Requirements
	XQuery as a Basis for Re-implementation
	Implementation Strategy
	Using NXT's stand-off format
	Using a redundant data representation

	Tests
	Test queries
	Test environment
	Comparability of results

	Speed Results
	Memory results
	Query rewriting
	Discussion

