
The NITE Query Language

Stefan Evert and Holger Voormann

Version 2.1
26 March 2002

Contents

1 Introduction and overview 2

2 General structure of a query 3

3 Match condition 4

3.1 Attribute tests . 5

3.2 Structural relations . 7

3.3 Temporal relations and fuzziness . 9

3.4 Regularity . 11

4 Query results 11

5 Quantifiers and scopes 12

6 XSLT stylesheet integration 14

7 Examples 15

7.1 Simple examples . 15

7.2 Examples with quantifiers . 16

7.3 Examples of queries embedded in stylesheets 17

7.4 Queries based on the NOM corpus example . 18

1

1 Introduction and overview

The NITE query language (NiteQL) specified in this document is based on the MATE query
language1 (Q4M). Some additions were necessary, and the semantics of query evaluation were
defined more clearly and accurately. The support for structural relations was completely re-
designed on the basis of the formal specification of the NITE object model (NOM), and the
time comparison operators were extended with optional rules for “fuzzy” matching. Complex
queries and quantifiers with variable scope make NiteQL more powerful and expressive than
its predecessor. Additionally, certain syntactic details were changed to make parsing with a
lex/yacc-style grammar easier and more robust2 as well as for the sake of better compatibility
with XPath and other W3C standards.

Is is important to keep in mind that the NITE query language operates on the level of the
NITE object model and was designed for maximal expressiveness and flexibility. Thus, its
view of a NOM corpus will not always coincide with the interpretation of the same data by
a user. For instance, an ordered tree could represent the syntactic analysis of a sentence or
a hierarchy of annotation codes, among many other possibilities. Although the two kinds of
trees are entirely dissimilar from the perspective of a user, they are structurally isomorphic and
neither the object model nor the query language make a distinction between them. Another
example is the distinction between annotation data and meta-data (information about the
recordings, transcriptions, and annotations that make up a multi-modal corpus): both can
be searched with the same query syntax although the interpretation of the search results will
be fundamentally different. The interpretation of the data structures that make up a NOM
corpus is the topic of the NITE data model. It is envisaged that a pre-processing or template
mechanism will later allow users to write queries in a simpler, but less expressive language
that operates in terms of this abstract data model. Internally, such queries will be translated
into equivalent NiteQL expressions for evaluation by the query processor.

The basic structure of a NiteQL query is similar to that of SQL and XQuery. First, variables
representing corpus elements are declared (and can be bound to a particular element type).
Then, these variables are bound to suitable elements so that the match condition – a Boolean
expression over attribute tests, structural constraints, and time constraints – is satisfied. The
result of a simple NiteQL query is a list of n-tuples of elements, representing matching variable
bindings. Variable can be bound internally with existential and universal quantifiers, in which
case they will not be part of the query result. Finally, simple queries can be combined into
complex queries, giving hierarchically structured results.

A query engine implementation may choose to support only a subset of the full NiteQL specifi-
cation. The core features, which all implementations must provide, are simple queries with all
attribute tests, structural and temporal relations, as well as the exists quantifier. Advanced
implementations will also support complex queries, scopes (for local variables and quantifiers),
and the forall quantifier. Further useful extensions are a template mechanism and/or user-
defined operators and functions, which could also be used to provide syntactic sugar for the
non-expert user.

Several possibilities for the implementation of a NiteQL query engine have been considered:
(i) The translation into an XQuery expression would be fairly straightforward. Unfortunately,
the XQuery standard is just being finalised and there are no free and efficient implementations

1see http://www.ims.uni-stuttgart.de/projekte/mate/WB3/Q4M/001/docu/quer.html
2In particular, attribute references like $w orth were changed to $w@orth, which avoids ambiguities in

connection with reserved keywords and (pre-defined as well as user-defined) lexical operators auch as and, or,
not, and overlaps.with.

2

available at the time of writing. (ii) It is theoretically possible to compile a NiteQL query
into a very large and complex XSLT stylesheet. However, there are many practical difficulties,
especially when the full scope of the query language is supported, and the resulting stylesheets
are likely to be too slow for sizeable corpora.3 It is still a tempting solution for queries that
are embedded into stylesheets. (iii) The best solution seems to be a custom implementation
(written in Java), perhaps using standard XML and XPath libraries to facilitate attribute tests
and object tree navigation. This is the recommended implementation strategy. (iv) When the
corpus is stored in a relational database rather than a set of XML files, it should be possible to
compile a NiteQL query into an equivalent SQL query. This will require special provisions in
the database design, though, especially a full representation of the dominance and precedence
relations.

This document assumes that the reader is familiar with the concepts and terminology intro-
duced in the NITE Object Model specification. The syntax of the NITE query language is
presented in a variant of EBNF (ISO/IEC 14977: 1996). For brevity, non-terminal symbols
are shown in italics and literal symbols in typewriter font (so that special quotes and colons
can be omitted). Multiple instances of the same non-terminal in a grammar rule may be dis-
tinguished by subscripted numbers for reference in the main text. Complex terminal symbols
(that are identified by a lexical analyser) are not defined in the EBNF notation, but described
informally in the main text. Alternatives are separated by a vertical bar |, parentheses (. . .)
are used for grouping, square brackets [. . .] indicate optionality, and curly braces {. . .} indi-
cate repetition (zero-or-more). Some care has to be taken to distinguish these meta-characters
from the corresponding literals (([{|}])).

2 General structure of a query

A simple NiteQL query consists of a variable declaration part and a match condition.
Variables represent corpus elements (usually of a certain type), and the match condition is a
Boolean expression over attribute tests, structural relations, and temporal relations between
elements. The result of a query is a list of variable bindings (mapping each variable to a
specific element in the corpus) which satisfy the match condition. It can also be interpreted
as a list of n-tuples of elements (where n is the number of declared variables that are not
internally bound, cf. Section 5). The declarations part is separated from the match condition
by a : character.

simple query =
declarations : match condition
| declarations [:]

The match condition may be empty, in which case it always evaluates to true and the :
delimiter is optional. A complex query consists of a sequence of single queries separated by
:: markers. Each query in the sequence operates on the “fixed” result of the previous query
(see Section 4 for a more detailed explanation).

complex query =
simple query { :: simple query }

3This assessment is supported – and exacerbated – by our observation that current XSLT processor seem to
be optimised for the simple structural transformations required by document formatting applications.

3

In the variable declaration part, variables representing corpus elements are declared. Usu-
ally, each variable is assigned to a certain element type (i.e. it may only be bound to elements
of this type). It is also possible to give a list of alternative element types or to leave the
element type unspecified.

declarations =
variable declaration { variable declaration }

variable declaration =
(var type)
| (var { , var } type { | type })
| (var { , var })

The type must be one of the element types defined for the corpus. A variable var consists of a
$ character followed by the variable name, e.g. $w, $phone1, and $$ (for the context element
within a stylesheet). It is also possible to declare several variables in a single statement.

NB: Different variables (with compatible type declarations) may be bound to the same ele-
ment, unless they are explicitly required to be different (cf. Section 3.2). It is therefore easy
to get swamped with unwanted, but formally correct matches by overlooking the possibility
of identical bindings. For instance,

($w1 word) ($w2 word) ($s s):
($w1@orth == "I") && ($w2@orth == "I") && ($s ^ $w1) && ($s ^ $w2)

will return every occurrence of the word I, with $w1 and $w2 bound to the same word element.
The intended result is obtained by adding the condition ($w1 != $w2).

Comments are allowed in the form of line comments and block comments. Line comments
start with the symbol // and extend to the end of the current line. Block comments are
delimited by /* and */, and may extend over multiple lines. Both types of comments are
removed before query evaluation.

3 Match condition

The match condition is a Boolean expression over attribute tests as well as structural and
temporal relations between elements. Boolean operators can either be written as the C-style
symbols ! (not), && (and), || (or) used by Q4M, or as the more readable XPath versions not,
and, or. Parentheses are used for grouping. The operators are listed in the order of their
precedence below.

match condition =
(match condition)
| ! match condition
| not match condition
| match condition && match condition
| match condition and match condition
| match condition || match condition
| match condition or match condition
| match condition -> match condition

4

| attribute test
| structural relation
| time relation

The implication operator mc1 -> mc2 is logically equivalent to the expression mc2 || !(mc1).
It is mainly used in conjunction with the forall quantifier (see Section 5). Every match con-
dition can be translated into an equivalent disjunctive normal form defined by the grammar
below.

match condition =
term { || term }

term =
factor { && factor }

factor =
[!] (attribute test)
| [!] (structural relation)
| [!] (time relation)

In most implementations, query evaluation will be based on this normal form, and optimisation strate-
gies will usually involve a reordering of the factors in each term. The query engine should evaluate
“cheap” conditions first to establish some variable bindings, and then follow relative paths (i.e. struc-
tural or temporal relations) to elements specified by more “expensive” conditions. Negated factors will
typically be evaluated as late as possible because they are likely to match a large number of elements.
Note that this reordering strategy rules out any short-circuit evaluation semantics for Boolean opera-
tors. Special optimisations may be needed for the -> operator. Especially when used as the top-level
operator within a scope, its translation into the equivalent normal form should be avoided.

3.1 Attribute tests

An attribute test compares the attribute value of an element to a constant (either a num-
ber or a string) or to another attribute value (of the same element or a different one). The
precise semantics of attribute tests are implementation dependent, and are not defined in
this document. In particular, implementations may or may not make a difference between
numerical, categorical, and string-valued attributes. It is recommended to follow the XPath
standard wherever possible. In particular, NiteQL should be weakly typed so that strings
can be converted to numbers when necessary (i.e. when a comparison operator or other com-
putation expects a numerical operand), and vice versa. This is consistent both with the NITE
object model and the XML standard, where all attribute values are strings per se (but may be
interpreted as floating-point numbers). No distinction should be made between integer and
floating-point numbers. (Note that an implementation of the NiteQL language may override
these recommendations for optimisation purposes.)

attribute test =
expr relop expr
| expr

5

relop =
== | eq
| != | ne
| >= | ge
| <= | le
| > | gt
| < | lt

The last form of an attribute test, which consists of a single expr, is evaluated to true or
false according to the XPath rules. Note that the operators >=, <=, >, < can also be used to
compare strings according to the collating sequence of the current locale. The more readable
lexical operators eq, ne, ge, le, gt, and lt are particularly useful for queries embedded in
stylesheets.

expr =
string constant
| number constant
| attribute value

Expr is either an attribute value or a constant, where constants (both numbers and strings)
are defined as in XPath. In particular, string constants must be enclosed either in single quotes
(’. . . ’) or in double quotes (". . . "). An attribute value is accessed through a variable bound
to the relevant element and the name of the attribute, separated by a @ character (again similar
to the XPath notation). A NiteQL implementation may extend the expr rule to cover complex
expressions calculated from attribute values and constants. These calculations may involve, for
instance, the elementary arithmetic and string manipulation functionality of XPath. However,
for optimisation reasons, one side of each attribute test should always be a simple attribute
value.

attribute value =
var@attribute
| TEXT(var)
| ID(var)

Remember that var starts with a $ character. attribute must be the name of an attribute
defined for elements of the respective type (as indicated by the variable declaration). The
built-in function TEXT() corresponds to the text() operator of the NITE object model and
returns the textual content of an element. For an XML-based implementation, ID() returns
the value of the special nite:id attribute, which should be a unique identifier of the respective
element. Examples of attribute value references are $word@orth and $turn@speaker, as
well as TEXT($np) for the textual content of the element $np. Note that attribute tests
involving the TEXT() function are more “expensive” than simple attribute references (of the
form var@attribute).

In addition to numerical or string comparison, an attribute value can be matched against a
regular expression. In this case, the LHS of the comparison must be a simple attribute value
(including the TEXT() function), and the RHS must be a string constant which is interpreted
as a POSIX regular expression. The regular expression must match the entire attribute value
rather than just a substring (in contrast to the grep program and similar applications).

6

attribute test =
attribute value ~ string constant
| attribute value !~ string constant

The start and end times of timed elements (corresponding to the special fstart and fend
attributes in the NITE object model) can be accessed through built-in START() and END()
functions, which return floating-point values. Additional functions are available to obtain
the length (DURATION()) and midpoint (CENTER()) of the time interval associated with an
element. If var is not bound to a timed element, the entire attribute test containing expr
evaluates to false. Timed elements can be identified with the TIMED() function:

expr =
START(var)
| END(var)
| DURATION(var)
| CENTER(var)
| TIMED(var)

The query engine should reorder attribute tests (within each term of a normal form) and evaluate
the easy ones first. An attribute test is easy if the LHS is a simple attribute value, and the RHS is a
constant. Matching elements can then be looked up quickly, provided that an index has been built. The
less easy attribute tests involve regular expressions and the built-in functions TEXT(), DURATION(), etc.
Everything else is really hard, especially when the implementation allows complex expressions (with
arithmetic or string manipulation functions).

The reason why we need built-in functions for the start and end times of elements (rather than accessing
the attributes directly) is that an implementation based on the standard XML encoding will store the
special time attributes in the NITE namespace. Thus $w@start refers to a user-defined attribute with
the name start, while START($w) refers to the special fstart attribute (named nite:start in the
standard encoding).

Note that the XPath comparison operator = is renamed to ==, for the sake of consistency with other
C-style operators. Implementations are free to add further synonyms for operators, such as =, &, | for
==, &&, and ||.

3.2 Structural relations

This section describes operators that give access to the explicit and implicit structural infor-
mation summarised in the NOM specification. It is assumed that the reader is familiar with
this summary, and the following definitions use the terminology introduced there. Please refer
to the NITE Object Model document for the precise semantics of structural relations.

The grammar rules below describe relations between two or three elements, represented by
indexed variables vari. In the main text, xi stands for the corpus element to which the variable
vari is bound. H stands for a named hierarchy or hierarchy collection and L for a (linear)
layer that appear in some of the rules.

structural relation =
var == var
| var != var

7

The simplest structural relation asserts the identity or non-identity of two elements. Since
different variables may be bound to the same element, the != operator is often necessary to
exclude unwanted results. The == operator is less useful and was mainly added for the sake
of symmetry.

structural relation =
var1 ^ var2

| var1 ^v var2

| var1 ^[v][n] var2

The first form of the dominance operator ^ represents the dominance relation x1 ⇑ x2.
More precisely, it is defined as the closure of direct dominance x1 ↑∗ x2, so that $x ^ $x is
always true. The second form specifies an exact vertical distance between x1 and x2, i.e. the
length of the path from x1 to x2. Note that |P (x1, x2)| = v + 1 and ^1 corresponds to direct
dominance (where |P (x1, x2)| = |{x1, x2}| = 2). The third form refers to the horizontal axis
formed by the elements at a given vertical distance v from x1 in the offspring tree O(x1), to
which x2 must belong. n is the position of x2 in this axis with respect to the axial ordering. If
v is omitted, the horizontal axis is the boundary of the offspring tree O(x1), and x2 must be
a leaf in O(x1). A negative value of n starts counting from the end of the axis. For instance,
$p ^1[1] $c matches the first child of $p, and $p ^1[-1] $c its last child).

structural relation =
var1 <[named hierarchy | var3]> var2

| var1 <[named hierarchy | var3]>h var2

The precedence operator <> requires that x1 and x2 belong to the named hierarchy H (or
hierarchy collection {Hi}) identified by hierarchy, and that x1 ≺H x2. Note that $x <> $x is
never true. The hierarchy can also be specified in the form of an offspring tree O(x3) (where
var3 indicates the root element x3), equivalent to the condition x1 ≺O(x3) x2. Note that
$x <$a> $y implies $a ^ $x and $a ^ $y, since x1 and x2 must belong to the tree O(x3)
(i.e. x3 ⇑ x1 ∧ x3 ⇑ x2). If the hierarchy is unspecified, precedence is interpreted wrt. some
offspring tree O(z), corresponding to the condition ∃z ∈ E : z ⇑ x1 ∧ z ⇑ x2 ∧ x1 ≺O(z) x2.
The second form additionally requires an exact sequential distance h between x1 and x2 with
respect to the given hierarchy or offspring tree.

It is interesting to note that the relation $x <> $y can also be expressed with an explicit exists

quantifier, using the scope notation introduced in Section 5: {(exists $w): $x <$w> $y}. A NiteQL

implementation might make this substitution internally before evaluating the query.

structural relation =
var1 v<var3>h var2

| var1 v<[named hierarchy]>h var2

This form of the precedence operator refers to the distance between x1 and x2 on a horizontal
axis (i.e. the number of intervening elements according to the axial ordering plus one). The
axis consists of all elements at a given vertical distance v from x3 in the offspring tree O(x3).
A vertical distance of v = −1 selects the boundary of O(x). Of course, x1 and x2 must belong
to the respective horizontal axis. The second form stipulates that some element x3 matching
these conditions exists, which must also satisfy x3 ∈ H if a named hierarchy H is specified.

8

Particularly useful forms of the precedence operator are <>1 for immediate neighbours (espe-
cially wrt. a named hierarchy, e.g. <orth>1 for orthographically adjacent words), and 1<>1
for adjacent siblings.

expr =
D(layer, var1, var2)
| DA(layer, var1, var2)

The horizontal distance represented by the built-in functiond D() and DA() is computed
by projection to a linear layer (this procedure is detailed in the NOM specification). The first
form requires x1 ≺ x2 and returns the horizontal distance between x1 and x2 obtained by
projection to the layer L. If the distance cannot be determined (e.g. the projections PL(x1)
and PL(x2) fall into different components of L or one of them is empty), the entire attribute
test containing the expr evaluates to false. The second form (absolute horizontal distance
DA(L,$x,$y)) is valid when either D(L,$x,$y) or D(L,$y,$x) is defined and returns the
respective value.

structural relation =
var1 >[role] var2

| var1 >[role]^ var2

Another structural relation is the pointer operator >. The first form matches a pointer from
x1 to x2 labelled with the role r (i.e. requires that x1 →r x2). The role is specified as a string
value enclosed in single or double quotes. (Recall that an element may have multiple pointers
with the same role.) If role is omitted, the relation matches any pointer regardless of its role,
corresponding to the condition x1 → x2. The pointer-to-subtree operator >^ combines >
and ^, and is especially useful in conjunction with hierarchies of annotation codes. It evaluates
to true iff there is an element w ∈ E such that x1 →r w and x2 ↑∗ w.

Of course, w is not part of the query result. As in the case of the <> operator, the pointer-to-subtree
relation can also be expressed through a scoped quantifier: {(exists $w): $x > $w && $y ^ $w} is
equivalent to $x >^ $y.

3.3 Temporal relations and fuzziness

The time operators of Q4M were supplemented with the fundamental inequalities

starts.earlier.than, starts.later.than,
ends.earlier.than, and ends.later.than,

from which most other operators can be constructed. Since the various symbols introduced
for time operators always were a source of confusion, use of the more readable lexical operators
listed in the second column of the table below is recommended.

time relation =
var1 op[modifier] var2

where op is one of the operators from the following list (s1, e1 are the start and end times of
the binding x1 of var1, and s2, e2 are those of the binding x2 of var2).

9

op lexical operator description definition
% overlaps.left left overlap s1 ≤ s2 ∧ e1 ≥ s2 (∧ e1 ≤ e2)
[[left.aligned.with left alignment s1 = s2

]] right.aligned.with right aligment e1 = e2

@ includes inclusion s1 ≤ s2 ∧ e1 ≥ e2

[] same.duration.as identical duration s1 = s2 ∧ e1 = e2

overlaps.with overlap ¬(e1 ≤ s2 ∨ e2 ≤ s1)
][contact.with contact e1 = s2

<< precedes temporal precedence e1 ≤ s2

starts.earlier.than earlier start time s1 ≤ s2

starts.later.than later start time s1 ≥ s2

ends.earlier.than earlier end time e1 ≤ e2

ends.later.than later end time e1 ≥ e2

Due to the nature of multi-modal / multi-media communication, time operators (especially
alignment, identical duration and contact) cannot be interpreted as strict equalities. Therefore,
points on the timeline that are within a certain fuzziness interval of each other must be
considered equal. The exact size of this interval is implementation-dependent, and should
be based on cognitive limits and user experiences. The size fuzziness interval should be
configurable (e.g. in a corpus schema, or within a NiteQL-based stylesheet) and may depend
on the type of signal to which annotations refer (e.g. video vs. audio recordings). Within a
query, the amount of fuzziness can be controlled by a modifier appended to one of the time
operators.

modifier =
++ | + | - | --

By default (without modifier), the equalities and inequalities in the table above are matched
exactly. The modifiers + and ++ enforce a stricter interpretation of the time relations, while -
and -- allow more lenience.

As noted above, all time operators can be broken down into combinations of fundamental equal-
ities and inequalities for start and end times (given in the table above), and thus into attribute
tests involving the START() and END() functions. For instance, inclusion $a @ $b is equivalent to
$a starts.earlier.than $b && $a ends.later.than $b. An implementation of the query lan-
guage should use a similar approach and provide optimisations for the fundamental time equalities
and inequalities (e.g. by maintaining a sorted list of the start and end times of all elements).

It might be sufficient to define fuzziness intervals for the fundamental equalities and inequalities (al-
though very short and very long element durations may have to be taken into account, e.g. $a @ $b
may evaluate to true for short non-overlapping elements if a fixed fuzziness interval is used). Below is
a suggestion for the interpretation of time equalities (t1 = t2) and inequalities (t1 < t2).

equality modifier interpretation
t1 = t2 ++ t1 = t2
t1 = t2 + t1 = t2
t1 = t2 t1 = t2
t1 = t2 - |t1 − t2| < ε
t1 = t2 -- |t1 − t2| < δ

inequalities modifier interpretation
t1 ≤ t2 ++ t1 ≤ t2 − δ
t1 ≤ t2 + t1 ≤ t2 − ε
t1 ≤ t2 t1 ≤ t2
t1 ≤ t2 - t1 ≤ t2 + ε
t1 ≤ t2 -- t1 ≤ t2 + δ

Here, ε stands for the cognitive limit, i.e. the smallest time difference that can be distinguished by a
human observer, and δ is the largest interval within which two events (usually from different modalities)
can reasonably be construed to happen at the same time. The exact values of ε and δ will have to be

10

fine-tuned during implementation. At least for corpora based on video recordings, which are typically
played back at a speed of approximately 25 frames per second, ε ≈ 1

25s seems a good starting point.

Note that some operators can be broken down into fundamental inequalities in more than one way.
Care has to be taken that the fuzziness definitions for the fundamental inequalities do not lead to
counterintuitive results. For instance, the definition of the overlap operator # involves logical negation,
so it may be necessary to swap ++ with -- and + with - when it is evaluated in terms of the fundamental
inequalities. It may also turn out to be necessary to adjust fuzziness intervals according to element
durations and the modalities involved. A possible solution for the latter involves multiple aligned
timelines with different granularities. As in the case of video frames, ε should be set to the granularity
of the coarsest timeline involved in a comparison.

3.4 Regularity

Experience from the MATE project shows that novice users will often formulate queries with
“unconnected” variables. Such a query is the logical conjunction (or worse, disjunction) of
two or more match conditions involving disjoint sets of variables. The query result is thus the
Cartesian product of the each of the “disjoint” match conditions, producing a large number
of unexpected matches.

The concept of regularity is intended as a safety measure, warning the user about a potentially
erroneous query and the long waiting time that has to be expected. It can be defined as a
reordering of the normal form so that the first factor in each term is an “easy” condition, and
that each “new” variable within the term is related to “known” variables to a structural or
temporal operator before it is used in an attribute test.

There are some examples of valid but irregular queries (e.g. coreference between elements by a
common ID code), so it should always be possible for advanced users to turn off such warnings.

4 Query results

The result of a simple NiteQL query is a list of n-tuples of elements (or, more precisely, variable
bindings) satisfying the match condition, where n is the number of variables declared without
quantifiers.4 The query result is returned in the form of an XML document (or, abstractely, a
new tree structure adjoined to the corpus). Each query match corresponds to a match element,
with pointers representing variable bindings and the variable name given by the pointer’s role.
An example result for a query involving variables $w and $p is

<matchlist size="2">
<match n="1">
<nite:pointer role="w" xlink:href="..."/>
<nite:pointer role="p" xlink:href="..."/>

</match>
<match n="2">
<nite:pointer role="w" xlink:href="..."/>
<nite:pointer role="p" xlink:href="..."/>

</match>
</matchlist>

4See Section 5 for details on quantifiers.

11

For a complex query, the leftmost simple query is evaluated first. Then, for every match, the
following simple query is evaluated with the variable bindings from the first query fixed, etc.
The fixed variable bindings may be used anywhere in the ensuing subqueries (without affecting
the regularity assessment). This evaluation strategy produces a hierarchically structured query
result, where each match of the leftmost simple query includes a matchlist for the second query.
In the example

($w word): $w@orth ~ "S.*" :: ($p phone): $w ^ $p

the query result has the following structure:

<matchlist size="2">
<match n="1">
<nite:pointer role="w" xlink:href="..."/>
<matchlist type="sub" size="2">
<match n="1">
<nite:pointer role="p" xlink:href="..."/>

</match>
<match n="2">
<nite:pointer role="p" xlink:href="..."/>

</match>
</matchlist>

</match>
<match n="2">
<nite:pointer role="w" xlink:href="..."/>
<matchlist type="sub" size="1">
<match n="1">
<nite:pointer role="p" xlink:href="..."/>

</match>
</matchlist>

</match>
</matchlist>

5 Quantifiers and scopes

There are many examples of queries which require auxiliary elements to express complex
structural relations. From the user’s perspective, such auxiliary elements should certainly not
be part of the query result. Even worse, in some cases more than one element might match
an auxiliary variable, and the query result is inflated with effectively duplicate matches that
just differ in the auxiliary elements. The mathematical solution to this problem are the ∃
(existential) and ∀ (universal) quantifiers. Such quantifiers “bind” a variable within a logical
expression, yielding an expression with fewer variables.

variable declaration =
(exists var { , var } type { | type })
| (exists var { , var })

In NiteQL, the existential quantifier (exists) can be added to a any variable declaration.
After evaluating the query, all quantified variables are removed from the query result, then
duplicate matches (with respect to the remaining variables) are combined into a single match.

12

The actual implementation should be more efficient than the strategy outlined above. When the
factors in each term of the normal form are re-ordered appropriately, it will often be possible to search
bindings for quantified along relative paths. Backtracking ensures that all matches are found but
that not duplicates (where the non-quantified variables are bound to the same set of elements) are
considered.

variable declaration =
(forall var { , var } type { | type })
| (forall var { , var })

The universal quantifier (forall) can also be added to any variable declaration. However, it
is only useful in connection with the implication operator ->, because otherwise all elements
of the specified type(s) would have to satisfy the match condition. Care has to be taken
that all attribute tests and structural relations involving a universally quantified variable are
embedded in the RHS of an implication whose LHS specifies a subset of elements that must
also satisfy the other conditions. Contrast the typical mistake of a novice user

($w word) (forall $m morph): ($w ^1 $m) && ($m@type == "stem")

(which requires that all morph elements must be lexical stems and children of a single word
element) to the correct form

($w word) (forall $m morph): ($w ^1 $m) -> ($m@type == "stem")

which finds words without affixes (all children of type morph must be marked as stems). When
existential and universal quantifiers are mixed, the result depends crucially on the particular
order of the variable declarations. Such queries should only be written by users who are
familiar with the basic notions of propositional logic.

The usage of quantifiers discussed up to now poses several problems. As has been said, the
forall quantifier should usually apply to a limited scope, often on the RHS of an implication.
Negation of the exists operator would be desirable for many applications, but again it is
only meaningful when its scope can be limited to a subexpression of the match condition.
Finally, query evaluation that is based on a transformation into normal form will often be
very inefficient, especially for universally quantified variables. In order to solve these problems,
simple subqueries can be embedded as a term in the match condition.

match condition =
{ simple query }

Such a match condition (which will often be embedded as a single term in a larger Boolean
expression), consisting of a simple query enclosed in curly braces, is called a scope. The vari-
ables declared within the scope are local to the simple query, and must all be quantified (both
existential and universal quantifiers are allowed and may be mixed). The match condition of
the inner query may also refer to global variables and variables from enclosing scopes (col-
lectively referred to as external variables). Since all local variables are quantified, the scope
does not return a list of elements but rather a Boolean truth value. It evaluates to true iff the
simple query matches for the current bindings of the external variables, and false otherwise.

The strongly recommended form for scopes declares just a single local variable, followed by
a match condition with an implication operator at the top level, as shown in the following
example.

13

($w word): ($w@pos == "NN") &&
{ (forall $m morph): ($w ^1 $m) -> ($m@type == "stem") }

As a term in a Boolean expression, a scope can be negated so that it evaluates to true iff
the inner query does not match, and vice versa. Scopes can thus be used to express negated
existential quantification, which is explicitly limited to the scope. For instance, to find non-
terminal elements (nt) in a syntax tree that do not dominate open-class words (word elements),
one could use the query below.

($x nt): !{ (exists $y word): ($x ^ $y) && ($y@class == "open") }

An implementation of the query processor should treat a scope as a complex subexpression that is not
modified when the containing match condition is transformed into normal form. Each scope should also
be evaluated as a single condition or “subquery”. If the inner match condition has the recommended
implicational form (with a simple condition on the LHS), only the RHS of the -> operator should
itself be normalised. It will often be possible for an optimised query implementation to evaluate scopes
efficiently, especially when they have this special form .

6 XSLT stylesheet integration

NiteQL will be deeply embedded in the XML processing architecture of the NXT, replacing
XPath in the select and match attributes of XSLT stylesheets. Although XPath can still
be used (it is needed to access attribute values) and may sometimes be more concise and
more efficient than NiteQL, selecting nodes with XPath requires an initimate knowledge of the
technical details of the XML encoding used by the underlying NOM implementation.

The main difference between a stand-alone query and an embedded query is that the latter is
supplied with a context node by the invoking XSLT template. This node must be a corpus
element and is represented by the special $$ variable in the query. Although the $$ variable is
implicitly defined and bound to the context element, it must still be declared when it is used
(and specifying an element type might allow certain optimisations).

The result of an embedded query must be a list of single element matches, i.e. a flat list of
elements. The $$ variable is never returned in the query result. Every other variable in the
query but one must be quantified. The query result is converted to a node set and passed back
to the XSLT processor. Note that NiteQL queries cannot be used to select attribute values;
here XPath has to be used. For instance, the XPath solution for printing the orthography and
the start and end times of a given word element would be

<xsl:template match="word"> <!-- XPath is more efficient here -->
<xsl:value-of select="@orth"/>
<xsl:value-of select="@nite:start"/>
<xsl:value-of select="@nite:end"/>

</xsl:template>

Turn to Section 7 for examples of NiteQL queries embedded in stylesheets.

When queries are used in stylesheets, optimisation is a crucial factor. Typically, the same query
will be invoked many times for different context elements. Many queries will be used to locate a
particular descendant or ancestor, or an element overlapping with the context element. The query
optimisers should transform such expressions into relative paths starting from the context element. In
the example

14

<xsl:apply-templates
select="($$) ($n noise): ($n@type == ’cough’) && ($$ ^ $n)"/>

it would probably be prohibitively slow to identify all noises of type “cough” first and then search the
context element among their ancestors. It is more efficient to start from the context element and scan
all its descendants for a noise of the desired type.

7 Examples

This section presents some examples of NiteQL queries with a short informal description of
their (intended) result. It is hoped that these examples will help to clarify the basic ideas
behind the query language, and provide a good starting point for further discussion.

7.1 Simple examples

Pairs of a word element $w and any descendant $p of type phone:

($w word) ($p phone): $w ^ $p

Pairs of a word element $w and any of its children (bound to $child):

($w word) ($child): $w ^1 $child

For each word element $w, return a list of all phone elements dominated by $w.

($w word) :: ($p phone): $w ^ $p

Elements are considered ancestors of themselves, so the following query would match every
word element in the corpus.

($w word): $w ^ $w

The same happens when two different variables can be bound to the same element:

($w,$v word): $v ^ $w

In order to make $v a “true” ancestor of $w, their non-identity has to be explicitly required:

($w,$v word): ($v ^ $w) && ($v != $w)

If we know that phrases are exactly two levels above morphs, using ^2 may be considerably
faster than the unrestricted ^ operator.5

($m1,$m2 morph) ($p phrase): ($p ^2 $m1) && ($p ^2 $m2)

5Theoretically, the query optimiser might be able work all that out by itself from the meta-information
about the layer structure of a corpus, but that is an extremely difficult task to implement.

15

A regular expression example: find “words” like errrm, which contain a sequence of three or
more r ’s and which are marked as hesitations (through a hesitation parent).

($w word) (exists $h hesitation): ($h ^ $w) && ($w@orth ~ ".*rrr.*")

If words and phones are both timed, the start time of each word should coincide with the start
time of its first phone. This query finds pairs of word and phone elements which violate this
condition (we need to know that phones are immediate children of words in order to select
the first phone).

($w word) ($p phone):
($w ^1[1] $p) && TIMED($w) && TIMED($p) && (START($w) != START($p))

7.2 Examples with quantifiers

Find two orthographically identical words that are “siblings” wrt. a phrase ancestor (i.e.
within the same phrase). This query returns word pairs ($w1, $w2) only, not the phrase
ancestor.

($w1,$w2 word) (exists $p phrase):
($p ^ $w1) && ($p ^ $w2) && ($w1@orth == $w2@orth) && ($w1 != $w2)

Even though $w1 and $w2 must be bound to different elements, we still have repetitions of
matches where $w1 and $w2 are swapped. In this case, the user needs to make his or her
choice about the sequential ordering of the two words explicit:

($w1,$w2 word) (exists $p phrase):
($p ^ $w1) && ($p ^ $w2) && ($w1@orth == $w2@orth) && ($w1 <orth> $w2)

The last condition states that $w1 must precede $w2 wrt. the orthographic ordering of the
orth hierarchy. We could also have used the precedence ordering in the offspring tree of the
phrase ancestor $p, which would already imply that $p must be a common ancestor of $w1
and $w2:

($w1,$w2 word) (exists $p phrase):
($w1@orth == $w2@orth) && ($w1 <$p> $w2)

Find words where subjects John and Mary speak simultaenously. In this corpus, word elements
are children of speaker elements (the speaker’s name is given by the attribute subj):

($w1,$w2 word) ($s1,$s2 speaker):
($s1@subj == "John") && ($s2@subj == "Mary") &&
($s1 ^ $w1) && ($s2 ^ w2) && ($w1 # $w2)

If we are only interested in words uttered by subject John that overlap with someone else’s
speech, we can apply exists quantifiers to all other variables.

($w1 word) (exists $w2 word) (exists $s1,$s2 speaker):
($s1@subj == "John") && ($s2@subj != "John") &&
($s1 ^ $w1) && ($s2 ^ w2) && ($w1 # $w2)

16

TODO: examples for forall and subqueries. A simple example is to find a noun phrase
where every word overlaps with some noise:

($p phrase) (forall $w word) (exists $n noise):
($p@cat == "NP") && ($p ^ $w -> $w # $n)

Note the complex interplay of universal and existential quantifier, and the importance of the
correct ordering (exchanging the declarations of $w and $n above would give entirely different
results – where all words have to overlap with the same noise element). The query is much
more intuitive with explicit scopes for the quantifiers, and easier for the query processor to
optimise

($p phrase): ($p@cat == "NP") &&
{(forall $w word) (exists $n noise): $p ^ $w -> $w # $n}

($p phrase): ($p@cat == "NP") && {
(forall $w word): $p ^ $w -> { (exists $n noise): $w # $n }

}

A more tricky problem is to find a hesitation (hesit) of subject John where nobody else is
trying to barge in (a rare phenomenon in most group discussions :–). For the solution, we
negate a scope with two existential quantifiers:

($h hesit) ($s1 speaker):
($s1@subj == "John") && ($s1 ^ $h) && ! {

(exists $s2 speaker) (exists $w word):
($s2@subj != $s1@subj) && ($s2 ^ $w) && ($h % $w)

}

Note how this generalises to any speaker when we omit the ($s1@subj == "John") test.

7.3 Examples of queries embedded in stylesheets

These examples show how NiteQL queries will be embedded in XSLT stylesheets. All code
samples below are fragments of stylesheets. In particular, the XML and XSLT declarations are
omitted. The output method is assumed to be plain text.

The first stylesheet simply prints all sentences from a corpus as textual transcription, enclosed
in <s> and </s> tags. Note that a NiteQL query used in a match attribute must specify a
condition for the context element $$ (and not return any other variable bindings).

<xsl:template match="/">
<!-- the top-level template extracts all <s> elements -->
<xsl:apply-templates select="($s s)"/>

</xsl:template>

<!-- for each <s> element, output all <word> ancestors -->
<xsl:template match="($$ s)">

<!-- the query above is equivalent to XPath match="s" -->

17

<xsl:for-each select="($$ s) ($w word): $$ ^ $w">
<!-- use XPath to output attribute value -->
<xsl:value-of select="./@orth"/>

</xsl:for-each>
</xsl:template>

This example will only work properly if the word elements (and also the s elements) are
returned in precedence order. Otherwise, the words have to be sorted in the stylesheet, e.g.
by their start times:

...
<xsl:for-each select="($$ s) ($w word): $$ ^ $w">

<xsl:sort select="@nite:start" data-type="number"/>
<xsl:value-of select="./@orth"/>

</xsl:for-each>
...

A second example creates lists of gestures for each gesture type. Only the template which
walks through the type hierarchy and compiles the lists of gesture elements is shown.

<xsl:template match="($$ gtype)">
<entry label="{@name}">

<list>
<xsl:apply-templates mode="insert_link"

select="($$ gtype) ($g gest): $g >’TYPE’ $$"/>
</list>
<xsl:apply-templates select="($$ gtype) ($t gtype): $$ ^1 $t"/>

</entry>
</xsl:template>

7.4 Queries based on the NOM corpus example

Find instances where the single subject gesticulates with both hands at the same time.

($g1,$g2 gest):
($g1@hand == "left") && ($g2@hand == "right") && ($g1 # $g2)

Because of the definition of the time operators, this query will also return matches where
the gestures overlap almost, but not quite (i.e. the second gesture starts exactly when the
first ends). Add a + modifier to enforce a noticeable amount of overlap, or a ++ modifier for
substantial overlap.

($g1,$g2 gest):
($g1@hand == "left") && ($g2@hand == "right") && ($g1 #++ $g2)

Use pointer relations to find possessive pronouns and their antecedents (indicated by a pointer
with role ANTECEDENT). We assume here that the antecedent may be either a noun phrase (np)
or a single word (word).

18

($w word) ($ante np | word):
($w@pos == "PP$") && ($w >"ANTECEDENT" $ante)

Extract verb+object pairs from the syntactic annotations, in the form of a verb and a noun
phrase which are children of the same verb phrase. The vp parent should not be part of the
query result. We use the regular expression /VB.*/ to identify words tagged as verbs in the
Penn Treebank tagset.

($w word) ($np np) (exists $vp vp):
($w@pos ~ "VB.*") && ($vp ^1 $w) && ($vp ^1 $np)

Find occurrences of the word these with an H* accent, overlapping with the stroke phase of a
deictic gesture. The gesture type is indicated by a pointer with role TYPE, pointing to a gtype
element in the hierarchy of gesture types.

($g gest) ($p phase) ($w word) (exists $a accent) (exists $t gtype):
($w@orth == "these") && ($a@tobi == "H*") && ($a ^ $w) &&
($p # $w) && ($p@type == "stroke") && ($g ^ $p) &&
($g >"TYPE" $t) && ($t@name == "deictic")

Had we used a more generic gesture type, such as topographic, we would not have found
gestures marked as deictic. The pointer-to-subtree operator can be used to express such
generalisations in a type hierarchy in the way below.

($g gest) ($p phase) ($w word) (exists $a accent) (exists $t gtype):
($w@orth == "these") && ($a@tobi == "H*") && ($a ^ $w) &&
($p # $w) && ($p@type == "stroke") && ($g ^ $p) &&
($g >"TYPE"^ $t) && ($t@name == "topographic")

19

