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1 Introduction

This document describes the NITE object model, a mathematical formalisation of the
data structures needed for the representation of richly annotated multi-modal language data.
Its technical perspective focuses on the objects and their relations, as well as constraints on
the complexity of structures that help to keep the data manageable and searchable. This
underlying representation may be quite different from the (interpretation of the) information
that is represented in it, which is the subject of the NITE data model (partly specified in
[1]).1 See [2] for an overview and explanation of the relation between object model and data
model.

Multi-modal data is usually and obviously described by reference to a common timeline.
Although sufficient for the immediate annotation of events and their temporal relations, this
simple approach is not sufficient for the full complexity of linguistic annotations. The major
challenge that such annotations present is that they combine hierarchical and sequential
structure, in various ways that may seem contradictory at times. The standard represen-
tation of such data takes the form of an ordered tree, as in the XML object model. It is
thus hardly surprising that XML has become a popular format and de facto standard in the
domain of natural-language processing (NLP). However, complex annotations that combine
different linguistic levels and different modalities will rarely fit into this limited framework.

At an abstract level, an XML document is simply an ordered tree of element nodes, to which
attribute nodes are attached. While element nodes define the structure of an XML document,
their attributes store the actual data in the form of character strings.2 This abstract view is
known as the XML document object model, or DOM. The files with lots of angle brackets
that most people associate with the term XML are merely a serialisation format for data
storage and exchange.

Experience in the MATE project [3] and other research has shown that linguistic data, includ-
ing the complex interactions that are observed in the domain of multi-modal communication,
can often be represented as a collection of intersecting hierarchies, which draw on the same
basic annotations (often referred to as transcription layers) in different ways. Some of these
hierarchies may be structurally independent, but are synchronised through a common time-
line. The NITE object model is an extension of the formalism of ordered trees to such multiple
intersecting hierarchies, maintaining the integration of hierarchical and sequential structure
as far as possible.3

While an implementation of the NITE object model does not necessarily depend on XML
technology, it is natural to use XML as a storage and exchange format. Therefore, Section 6
defines an XML extension syntax for the serialisation of a NOM corpus into a collection of
XML files. Note that this specification does not make provisions for the storage of meta-
data (referring both to the “implicit” metadata summarised in Section 4 and to additional
information about the corpus), which is described in [1].

1As an example, formally identical tree structures can represent a hierarchy of annotation codes or the
syntactic analysis of a sentence. Although these examples are highly dissimilar from the perspective of a user,
there is no need for a distinction in the object model.

2This short account glosses over other node types such as comments, text nodes, and processing instructions.
These nodes are particular to the use of XML as a human-readable document format and have no impact on the
information stored in an XML document (for instance, text nodes can equivalently be represented as elements
with a single attibute holding the content of the text node).

3This is in marked contrast to e.g. directed acyclic graphs (DAGs), which can be thought of as generalised
hierarchies and abandon sequential ordering altogether.
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One advantage of our approach is that existing XML resources can easily be integrated into
a NOM corpus, requiring only minor changes to the original files. In order to maximise
compatibility, we have to take established XML practice into account, notably the tendency
to store data in text nodes rather than attributes.4 It should be clear from the definition of the
NITE object model in Section 2 that the use of text nodes is discouraged as being inconsistent
with the underlying model. However, special provision for textual content is made in form of
the text() operator (see Section 2.6 for details).

1.1 Some background in graph theory

The structural properties of an object model are often discussed and defined in terms of
graph theory. Therefore, we will briefly review the basic concepts and terminology of the
mathematical theory of graphs in this section. Particular emphasis is given to ordered trees,
which are an essential ingredient of the NITE object model.

A directed graph is a set of nodes (also called vertices) connected by edges (which
are often pictured as little arrows between the nodes). In the NITE object model, nodes are
referred to as elements (following XML terminology) and we write E for the set of all elements.
The edges are represented by a binary relation R on E, which is a subset of the Cartesian
product E×E. Each element (x, y) ∈ R ⊆ E×E stands for an edge from node x to node y. For
an undirected graph, the edge relation must be symmetric, i.e. (x, y) ∈ R ⇐⇒ (y, x) ∈ R.
A path from x to y is a sequence of consecutive edges (x, z1), (z1, z2), . . . , (zn, y). A loop in
x is a path from a node x to itself. A graph is acylcic iff it does not contain any loops.

Certain acylcic graph structures can be pictured in a two-dimensional plane with all edges
pointing in the same direction, usually downwards. For an edge (x, y), x is then referred to
as the parent of y and y is a child of x (nodes that are children of the same parent are also
called siblings). Using this terminology, a tree is an acyclic directed graph where every node
has at most one parent (i.e. there is at most one edge (x, y) for every element y ∈ E), and
there is exactly one node without parent, called the root node. Without the latter condition,
the graph can be partitioned into a collection of unconnected trees (one for each root node),
and is sometimes called a grove. A node without children is called a leaf node, and we refer
to the set of all leaves in a tree or grove as its boundary.

The children, grandchildren, etc. of a node x in a tree or grove are collectively referred to as
the descendants of x. Likewise, the node’s ancestors are its parents, grandparents, etc.

Ordered trees (also called plane trees) extend the purely hierarchical structure of trees
with a sequential ordering (and thus go beyond the general framework of directed graphs).
This combination of hierarchical and sequential structure has earned them a central place in
many applications (including linguistics and NLP) and at the heart of the XML format. As
with trees, the hierarchical dimension is usually pictured on the vertical axis (top to bottom)
and sometimes described as dominance; the complementary sequential dimension is pictured
on the horizontal axis (left to right) and referred to as precedence.

As noted above, ordered trees are beyond the scope of a simple graph formalism. Several
different frameworks for their representation are described in the literature, but there does
not seem to be an agreement on a standard representation. Typically, an ordered tree is

4There is much uncertainty in the XML community about when it is appropriate to store information
in attributes. Every XML textbook explains somewhere within the first twenty pages that <w orth="dog"

pos="NN"/> and <w> <orth>dog</orth> <pos>NN</pos> </w> are (almost) equivalent representations of the
same data. The accompanying examples often mix attributes and text nodes in a highly unsystematic way.
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described by specifying an ordered list of children for each (parent) element. In addition to an
implicit representation of the dominance graph, these ordered lists define a precedence relation
among siblings, which is then extended to descendants: if x and y are siblings and x precedes
y, then any descendant of x precedes any descendant of y. Any two nodes x, y of an ordered
tree are either in a dominance relationship or in a precedence relationship, but not both.

One widely used formalism is the so-called bracketing notation, which represents an ordered
tree as a sequence of opening and closing brackets and is isomorphic to the XML file format
(with start tags corresponding to opening brackets and end tags corresponding to closing
brackets). In this representation, a node x (which is called and element in XML terminology)
precedes another node y iff the closing bracket of x comes before the opening bracket of y in
the bracket sequence (i.e. the end tag of x precedes the start tag of y in the XML serialisation).
Likewise, x dominates y iff the opening bracket of x comes before that of y and the closing
bracket of x comes after that of y (and similarly for the start and end tags in the XML
serialisation).

In addition to the precedence ordering (which is a strict partial ordering on the set of nodes),
the nodes of an ordered tree can be enumerated by traversing the tree in a systematic fashion.
The conventional enumeration is based on a top-down, left-to-right, depth-first traversal. In
contrast to the partial ordering of precedence, enumeration of the nodes induces a linear
ordering of all nodes in the tree. Despite its theoretical interest, this enumeration ordering
is of little practical import. A more useful linear ordering is obtained by restricting the
precedence relation to a suitable subset of the tree. This subset must satisfy the condition
that there are no dominance relations between its nodes (i.e. no node x in the subset may
dominate any other node y in the subset) and is referred to as a (horizontal) axis. The axial
ordering induced on a horizontal axis is linear: since there are no dominance relations within
the axis, any two nodes x, y must be in a precedence relationship. Examples of horizontal
axes are (i) the set of all nodes at a certain “vertical distance” from the root node (the set of
its children, the set of its grandchildren, etc.) and (ii) the boundary of a tree.

Notes on the mathematical terminology for ordered sets: A partial ordering of a set E is a
binary relation ≺ on E, which must be transitive (x ≺ y ∧ y ≺ z =⇒ x ≺ z), antisymmetric
(x ≺ y ∧ y ≺ x =⇒ x = y), and reflexive (x ≺ x ∀x ∈ E). If ≺ is irreflexive (x 6≺ x ∀x ∈ E,
and hence x ≺ y =⇒ y 6≺ x) instead, it is called a strict ordering. Two elements x, y ∈ E are
comparable iff x ≺ y or y ≺ x. An ordering is linear iff any two different elements x, y ∈ E
are comparable (because such an ordering arranges the elements of E in a linear sequence).

2 The NITE object model

The components of a NOM corpus are (i) atomic units of information stored as string
values (attributes), which are grouped into elements (Section 2.1); special attributes linking
(some) elements to a common timeline; (ii) structural relations between the elements,
namely hierarchical dominance (Section 2.2) and sequential precedence (Section 2.3); (iii)
unconstrained pointers between elements (Section 2.4); (iv) a decomposition of the corpus
into layers, which define named hierarchies (Section 3); and (v) metadata (Section 4),
providing information about element types, the domains of attributes, pointer roles, layers
and named hierarchies, as well as further optional information not defined in this document.5

5This additional information may include restrictions on the structural relations and pointers allowed be-
tween certain element types and/or layers, valid element types for each layer, coding schemes, a list of filenames
for serialisation, external resources (such as video or audio recordings), etc. Note that the term metadata is
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Formally, a NOM corpus is a 10-tuple (E,A,⇑,≺,→, T, τ, R,N, λ). A detailed discussion of
the components of this tuple is given in the following sections and in Section 3.

2.1 Elements and attributes

A NOM corpus is based on a set E of elements. A string-valued partial function f : E → Σ∗

is called an attribute, and A is the set of all attributes. (The free monoid Σ∗ is the set
of all strings over the alphabet Σ. In an implementation of the NITE object model, Σ will
usually correspond to the set of Unicode characters,6 but special 8-bit encodings may be used
as well.) In the following, small letters x, y, z, . . . ∈ E and f, g, h, . . . ∈ A stand for elements
and attributes, respectively.

The basic metadata includes an inventory T of element types7 and a function τ : E → T
(called a type mapping) that assigns each element to its type (see also Section 4). The
domains of attributes may be restricted to certain element types, but such restrictions are
not formalised here (the domain dom(f) of an attribute f is the set of all elements x ∈ E for
which f(x) is defined).

There are two special real-valued time attributes, which are usually valid for all element
types.8 The start and end attributes fstart : E → R and fend : E → R link elements to a
common timeline, and their domains must coincide (i.e. dom(fstart) = dom(fend)). fstart(x)
and fend(x) represent the start and end points of a time interval associated with the element
x, and must satisfy fstart(x) ≤ fend(x). fstart(x) = fend(x) is explicitly allowed and identifies
a point on the timeline. (See Section 2.5 for a further discussion of the time attributes).

2.2 Dominance and hierarchies

The dominance relation ⇑ ⊆ E × E is a transitive (x ⇑ y ∧ y ⇑ z =⇒ y ⇑ z) and
irreflexive (there is no x ∈ E with x ⇑ x) binary relation on E,9 which must satisfy the
unique path criterion (UP, see below). x is said to dominate y iff x ⇑ y holds; following
the usual terminology for hierarchical data structures, x is also called an ancestor of y, and
y a descendant of x. Given two elements a, b ∈ E with a ⇑ b, the path P (a, b) from a to b
is the set

P (a, b) := {x ∈ E | a ⇑ x ∧ x ⇑ b} ∪ {a, b}

often used for additional information attached to an entire corpus or individual observations in the corpus
(e.g. information about speakers/agents, date of recording, annotators and the annotation process). From the
technical perspective of this document, such information is ordinary data rather than true metadata. [1] defines
a standard set of metadata used in the NXT toolkit (and allows for some user-defined metadata in the non-
technical sense, stored per corpus or per observation), including a standardised XML encoding. This approach
also encompasses an orthogonal decomposition of layers along the dimensions of agents, transcriptions, codings,
and observations (cf. Section 3).

6In this simple formalism, sequences of combining characters – together with the base character they apply
to – have to be treated as a single “extended” character (see [6] for details and terminology).

7Element types correspond to the concept of element names in XML. It seems more appropriate to speak
of types – from a fixed inventory – rather than names in our setting, but keep in mind that element types will
be expressed as element names in an XML-based implementation. [2] speaks of the simple type of an element.

8Although it might make sense not to allow start and end values for elements representing “timeless”
information.

9These two conditions make ⇑ a strict partial ordering on E. Antisymmetry (which takes the form
x ⇑ y =⇒ y 6⇑ x for a strict ordering) follows automatically: if x ⇑ y and y ⇑ x, then by transitivity also
x ⇑ x, in contradiction to the irreflexivity of ⇑.
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The unique path criterion requires that

(UP) ∀x, y ∈ P (a, b) : x ⇑ y ∨ y ⇑ x ∨ x = y

for every path P (a, b) (i.e. ∀a, b ∈ E with a ⇑ b). In other words, the restriction of the
dominance relation to any path P (a, b) must be a (strict) linear ordering, since x 6= y are
always comparable.

x immediately dominates y (x ↑ y) iff x ⇑ y and P (x, y) = {x, y} (i.e. there is no intervening
element “between” x and y). In this case, x is also called a parent of y, and y a child of x.
For the set of parents of X and the set of its children, we use the notation Parents(x) :=
{y ∈ E | y ↑ x} and Children(x) := {y ∈ E | x ↑ y}. ↑ ⊆ E × E defines a graph structure on
the set of elements, which we refer to as the parent-child graph. Its transitive closure ↑∗
recovers the dominance relation:

x ↑∗ y ⇐⇒ x ⇑ y ∨ x = y

Proof: Since x ↑ y implies x ⇑ y and ⇑ is transitive, we have x ↑∗ y =⇒ x ⇑ y ∨ x = y.
Conversely, for x ⇑ y, consider the path P (x, y) ⊇ {x, y}. Arranging the elements of P (x, y) ac-
cording to the linear ordering induced by the dominance relation (because of the UP), we have
P (x, y) = {x = w0, w1, . . . , wn = y} with wi ↑ wi+1 (because any element z ∈ E with wi ⇑ z ⇑ wi+1

would also belong to P (x, y) and would have to be listed between wi and wi+1 in this enumeration).
Thus, x = w0 ↑ w1 ↑ . . . ↑ wn = y and hence x ↑∗ y.

The parent-child graph structure and the equivalence above explain the graph-theoretical
terminology used, the definition of P (a, b) as the path between a and b, and the unique
path criterion. The terms parent, child, ancestor, descendant, and dominance correspond
to the respective graph-theoretical notions (as introduced in Section 1.1) on the parent-child
graph. The elements of P (a, b), linearly ordered by the dominance relation, are the nodes
of a path from a to b, and the UP ensures that this path is unique. When further terms
from graph theory are introduced below, their definitions are (nearly) equivalent to the usual
graph-theoretical meaning applied to the parent-child graph.

Note that the definition of ⇑ as a transitive and irreflexive relation results in a directed
acyclic graph (DAG), as there can be no loops in the parent-child graph. Hence the funda-
mental difference between dominance in the NITE object model and DAGs lies in the unique
path criterion. DAGs allow multiple paths between nodes, whereas the UP guarantees that
P (a, b) (if it exists) is the unique path between a and b.

A subcorpus is a subset C ⊆ E together with all attributes and relations restricted to C,
i.e. the 10-tuple (C, {f∣∣C | f ∈ A} ,⇑∣∣C ,≺∣∣C ,→∣∣C , T, τ∣∣C , R,N, λ∣∣C).10 A root element in the
subcorpus C is an element x ∈ C which has no parents in C, i.e. where Parents(x) ∩ C = ∅;
likewise a leaf element y has no children in C, i.e. Children(y) ∩ C = ∅ (these definitions
extend to the case where C = E). For any x ∈ E, the subcorpus O(x) of all descendants
of x, including x itself, is called the offspring of x. Similarly, the subcorpus A(x) of all its
ancestors, including x itself, is called its ancestry.

O(x) := {y ∈ E | x ⇑ y} ∪ {x} = {y ∈ E | x ↑∗ y}
A(x) := {y ∈ E | y ⇑ x} ∪ {x} = {y ∈ E | y ↑∗ x}

A hierarchy H ⊆ E is a subcorpus that satisfies the following two conditions:
10f

∣∣C marks the restriction of a function f on E to the subset C ⊆ E. Likewise, ⇑∣∣C is the restriction of a
relation on E to C: ⇑∣∣C = ⇑ ∩ (C × C).
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1. every element x ∈ H has at most one parent in H, i.e. there is at most one y ∈ H with
y ↑ x (or, equivalently, |Parents(x) ∩H| ≤ 1);

2. for every x ∈ H, the hierarchy also contains the entire offspring of x, i.e. O(x) ⊆ H.

It is shown below that, because of property 1, every hierarchy H is a collection of tree structures rooted
in the root elements of H, i.e. a grove. (This may be somewhat different from the conventional notion
of a hierarchy as a single tree.) Property 2 ensures that hierarchies are closed wrt. their descendants,
extending the graph-theoretical concept of a grove. This property will turn out to be important
when intersections of hierarchies are considered and it helps to ensure the consistency of the different
precedence orderings on the hierarchies. (Interestingly, property 2 can be rephrased as the requirement
that every leaf in H is also a leaf in E.) Property 2 also implies that a root element in H, i.e. an
element without parent in H, cannot have any other ancestors (grandparents etc.) in H either.

A hierarchy with a single root element is called a tree. It is an unordered tree in the graph-
theoretical sense (with respect to the parent-child graph). For every x ∈ E, the offspring O(x)
is a tree rooted in x, and the ancestry A(x) is an “inverted” tree (where parent and offspring
are replaced by child and ancestry in the definition above). Every hierarchy H is a union of
disjoint trees (one for each root element in H), called the components of H:

H =
◦⋃
{O(x) | x is a root element in H} .

In particular, every tree T can be written as the offspring of its root element x: T = O(x). An
important property of the set of all hierarchies in a corpus is that it is closed under intersection:
for any two hierarchies H1,H2 ⊆ E, their intersection H1 ∩H2 is also a hierarchy. Note that
the intersection of two trees need not be a tree itself (but is always a hierarchy).

Proofs: Property 2 stipulates that for any x ∈ H, including any root element x, O(x) ⊆ H. Furthermore,
if x is not a root element, then it must belong to the offspring tree of some root element y ∈ H:
x ∈ O(y) (which can be found by moving up along the acyclic parent-child graph until an element
without parents in H is reached). The offspring trees of two different root elements in a hierarchy
H cannot intersect because of property 1. Otherwise, for any z ∈ O(x) ∩ O(y) we consider the set
P := P (x, z) ∪ P (y, z) ⊆ H. Since no w ∈ P can have more than one parent in P ⊆ H, the set P is
linearly ordered by the dominance relation. (This is shown easily by induction starting from z, making
use of the fact that all elements w ∈ P are connected to z in the parent-child graph.) Since x, y ∈ P
and x 6= y, we have either x ∈ O(y) ⊆ H or y ∈ O(x) ⊆ H, so that either x or y must have ancestors in
H and cannot be a root element. It is obvious that properties 1 and 2 also hold for the intersection of
two hierarchies, which is thus itself a hierarchy. However, the intersection of two trees can have more
than one root element (in which case it is a hierarchy, but not a tree).

We can interpret a NOM corpus as a collection of intersecting hierarchies. More specifically,
the E is the union of the (usually not disjoint) trees O(x) for all root elements x in E:

E =
⋃
{O(x) | x is a root element in E} .

2.3 Precedence: multiple sequential orderings

The precedence relation defines a strict partial ordering on each hierarchy in the corpus,
which is restricted to the components of H (so that elements from different components of
H are never comparable in H). The precedence ordering on H extends every component
T to an ordered tree in the graph-theoretical sense (cf. the properties listed in Section 1.1).
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As a further requirement, the precedence orderings of different hierarchies H1 and H2 must
be consistent, i.e. they must be identical on every component of the intersection H1 ∩ H2.
Alternatively, precedence can be defined as a linear ordering of each set of siblings11 in the
corpus, and then extended to precedence orderings on the hierarchies (so that the consistency
requirement is automatically satisfied).

The precedence relation ≺⊆ E × E × E is a ternary relation on E that induces a family
of strict linear orderings {≺z}z∈E , where ≺z is a linear ordering on Children(z). Using the
notation

x ≺z y ⇐⇒ ≺ (z;x, y),

we have the following formal requirements on ≺:

1. x ≺z y =⇒ x, y ∈ Children(z), i.e. ≺z defines a binary relation on Children(z);
(equivalently, ≺⊆

{
(z;x, y) ∈ E × E × E

∣∣ z ↑ x ∧ z ↑ y})

2. ≺z is a strict linear ordering on Children(z), i.e. for all x, y ∈ Children(z) exactly one of
three mutually exclusive conditions holds: x = y or x ≺z y or y ≺z x.

A tree O(x) together with the local orderings {≺z}z∈O(x) for its element nodes is an ordered
tree in the graph-theoretical sense. This holds in particular for the components of a hierarchy
H. Therefore, the sequential orderings (precedence, enumeration, and axial ordering)
introduced in Section 1.1 for ordered trees can be applied to the components of hierarchies,
and thus to the hierarchies themselves. Note that in the extension to hierarchies, elements
from different components are never comparable (with respect to either one of the orderings).

In the following, we give an explicit definition of the precedence ordering on hierarchies, which
is most important for the data model. (The axial ordering is obtained by restriction of the
precedence relation to a horizontal axis, and will be further explained in Section 5.2.) For each
hierarchy H, the extension of ≺ to precedence orderings on the components of H is written
≺H⊆ H ×H, and is called the H-precedence relation. Formally, ≺H is defined by

x ≺H y ⇐⇒ ∃z, x′, y′ ∈ H : (x′ ↑∗ x) ∧ (y′ ↑∗ y) ∧ (x′, y′ ∈ Children(z)) ∧ (x′ ≺z y′).

The condition x′, y′ ∈ Children(z) is redundant since it is implied by the last term. It is
intended as a reminder that z is a common ancestor of x and y, which ensures that elements
from different components are never comparable.

The extensions of ≺ to different hierarchies are consistent. For any two hierarchies H1 and
H2, the H1-precedence and H2-precedence relations are identical on every component T of the
intersection H1 ∩H2:

x ≺H1 y ⇐⇒ x ≺H2 y ⇐⇒ x ≺(H1∩H2) y ∀x, y ∈ T

or, more concisely,
≺H1

∣∣T = ≺H2

∣∣T = ≺(H1∩H2)
∣∣T .

Note that the orderings need not be consistent on the entire hierarchy H1 ∩H2: elements x
and y from different components of H1 ∩H2 may belong to a single component of H1 (or H2,
or both), so that they are comparable in ≺H1

∣∣H1∩H2
but cannot be comparable in ≺(H1∩H2).

11As in graph theory, a set of siblings is defined as the set of children Children(x) of an element x. Note that
here, unlike in the case of trees in Section 1.1, an element y can belong to more than one set of siblings (when
it has multiple parents).
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Proof and remark: It follows immediately from the definition of ≺H that the precedence ordering
≺H

∣∣O(x) induced on the offspring tree of an element x ∈ E is the same for every hierarchy H with
x ∈ H. Taking x as a root element of the intersection H1 ∩H2 (so that O(x) is one of its components),
we obtain the consistency requirement between different hierarchies. Conversely, any collection {≺H}
of consistent precedence orderings on the hierarchies in E can be derived from a suitable precedence
relation ≺⊆ E×E×E. For any x ∈ E, the ordering ≺x of its children is obtained directly from O(x),
while consistency ensures that the extension of these local orderings to hierarchies recovers the original
precedence orderings {≺H}. (The consistency requirement is used in the form ≺H

∣∣O(x) =≺O(x) for
every x ∈ H.)

Many NLP applications, especially in the field of multi-modal communication, make heavy
use of flat transcription and annotation layers, which consist of sequences of elements without
(internal) hierarchical structure.12 In the NITE object model, just as in XML, it is necessary
to introduce a common parent element (or a tree of ancestors) in order to express the sequential
ordering of the elements within each layer. Since this element (or tree) does not represent
actual corpus data, a special stream element should be used, which applications such as
display and query modules can easily hide from the user (see also Section 6). The formal data
model does not distinguish between stream elements and “ordinary” elements, except that no
attributes should be defined on the former (including fstart and fend).

2.4 Pointers

Dominance and precedence, with the limitations imposed by the intersecting hierarchies model
and the unique path criterion, are not sufficient to capture all the complexity of linguistic data.
This is especially true for cross-references (such as traces and anaphora) and for cross-modality
annotation, both of which would often violate the UP were they encoded in the parent-child
graph. Therefore, the NITE object model allows additional pointers to express arbitrary
connections between elements. Each pointers is a directed link from a source element to a
target element, and is labelled with a role. There may be multiple pointers with the same
role originating from a given source element or pointers with different roles between the same
elements, but no two pointers between the same elements with the same role.

The formal definition of pointers involves a set R of roles and an arbitrary relation →⊆
R × E × E, called the pointer relation. For each role r ∈ R, → induces a binary relation
→r⊆ E × E on E:

x→r y ⇐⇒→ (r;x, y)

Each →r is interpreted as a directed graph on E, so that the pointer relation defines a set of
overlayed graph structures. Note that there are no constraints on the graph structures →r,
which may therefore contain both loops and multiple paths.

This great expressive power comes at a price: we cannot connect the pointer graphs with the
hierarchical or sequential structure of the corpus (in the form of the dominance and precedence
relations). Moreover, applications such as the query processor have no direct access to the
closures of local structures (in contrast to ⇑ and ≺H , which are transitive closures), and must
process pointers “one step at a time”. These limitations of pointers are reflected in the NiteQL
query language [4], which provides complex operators for hierarchical and sequential structure,
but only basic support for pointers.

12Mathematically, such a flat layer can simply be represented as an ordered list of elements.
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2.5 Time attributes

We use the term timed element for an element with timestamps, i.e. an element x ∈
dom(fstart) = dom(fend). When two timed elements are in a dominance relationship, their
timings must be consistent with the hierarchical structure:

x ⇑ y =⇒ (fstart(x) ≤ fstart(y)) ∧ (fend(x) ≥ fend(y)) ∀x, y ∈ dom(fstart) = dom(fend)

Timestamps need not be consistent with the various H-precedence orderings or with any of
the pointer graphs. An implementation of the NITE object model should provide facilities to
infer an element’s timestamps from its descendants, setting

fstart(x) = min {fstart(y) | y ∈ O(x) ∩ dom(fstart)} ;
fend(x) = min {fend(y) | y ∈ O(x) ∩ dom(fend)} .

Thus, only leaf elements13 need explicit timestamps, and the consistency requirement above
is always fulfilled. Note that in certain situations it may still be necessary to have explicit
timestamps at different levels.14 The object model makes no difference between “explicit” and
“inferred” time attributes.

2.6 Textual content

In XML, information can be stored either in the form of attributes or in separate text nodes.
The textual content of an element is then interpreted as the linear concatenation of all text
nodes contained in the element’s body.15 In the NXT data model, the equivalent of an XML
element body is the element’s offspring tree together with its precedence ordering. When
existing XML resources are integrated into a NOM corpus, the textual content of an element
can be retrieved with the special text() operator.

An XML-based implementation with support for text nodes has to make sure that the textual
content of each element is computed correctly. Optionally, functionality can be provided to
insert new text nodes into a corpus.16

The recommended implementation strategy is to represent text nodes by special “invisible”
text elements. These elements must be leaves, cannot be the source or target of pointers,
and are ignored by the dominance relation, the precedence relation, and the axial orderings
(for instance, two siblings separated only by text nodes are still considered adjacent). The
textual content text(x) of an element x is then determined in the following way: First, the
“extended” offspring tree O′(x) including the relevant text nodes is generated together with
its “extended” precedence ordering. Since text nodes have no descendants, they cannot be
in dominance relationships with each other. Hence, the text nodes form a horizontal axis in
O′(x), which is linearly ordered by the restriction of extended precedence to the axis. Now
text(x) is given by the concatenation of the text nodes in their linear order.

13More generally, elements at the lowest level linked to the timeline, which is usually a transcription layer.
14E.g. when when timings are first recorded at a higher level (such as words) and later refined to a smaller

granularity (such as individual phones).
15This includes both text nodes that are direct children of the element and text nodes embedded within

descendants of the element.
16Text nodes will often stem from external XML documents that are integrated into the corpus. In this

common case, only read access is necessary, but care has to be taken to preserve existing text nodes when new
elements are inserted.
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3 Layers and serialisation

The NITE data model is formulated in terms of the disjoint layers introduced in this section.
This layer structure also forms the basis for the transformation of a NOM corpus into a
collection of XML files (or equivalent hierarchical data structures) for permanent storage, a
process referred to as serialisation. It is also possible, of course, to store NOM corpora in an
entirely different format, e.g. as a list of elements together with an explicit representation of
all functions17 and relations defined in the object model. However, such a graph-based format
would not be able to take advantage of the structural properties of the intersecting hierarchies
design (including the easy re-use of existing XML software and resources).

Every hierarchy H ⊆ E can be serialised into a single XML file. If H has more than one
component, a common root element must be inserted into the XML representation. Alterna-
tively, each component tree may be written to a separate file. However, since the hierarchies
intersect, this simple approach would duplicate many elements in the serialisation and might
easily lead to inconsistencies (in addition to wasting disk space and processing time). It is
therefore desirable to decompose a corpus into disjoint subsets, which we refer to as layers.

The layer structure can be expressed formally through a layer mapping λ : E → N , where
N is a set of layer names.18 A layer L ⊆ E is the subcorpus containing all elements that
are mapped to the same layer name nl ∈ N ; in short, L = λ−1(nl). An element x ∈ L is a
leaf in L iff it has no children in L, i.e. Children(x) ∩ L = ∅.19 It is an interior element of
L iff all its children belong to L, i.e. Children(x) ⊆ L. Note that by these definitions, every
leaf in the full corpus E is both a leaf and an interior element in its layer. A layer is called
linear iff it contains only interior elements and leaves.20 The boundary of a linear layer L
is the set of all leaves in L.

Layers must be vertically connected (wrt. the parent-child graph), in the sense that for any
x, y ∈ L with x ⇑ y, we have P (x, y) ⊆ L. When a layer is extended to include all descendants,
the resulting subcorpus

H(L) :=
⋃
{O(x) | x ∈ L}

must be a hierarchy. This requirement is equivalent to the condition that no two elements
from the same layer may have a common descendant in the corpus (unless one dominates the
other). Formally, for all x, y ∈ L either O(x) ⊆ O(y) or O(y) ⊆ O(x) or O(x) ∩O(y) = ∅.21

Another formulation of the hierarchy requirement, which may be easiest to validate in an actual im-
plementation, stipulates two conditions: (i) every element x ∈ L has at most one parent in L; (ii) any
two elements x, y ∈ L that are not in a dominance relationship (i.e. neither x ⇑ y nor y ⇑ x) must
not have a common descendant in the full corpus E. The consistency checks can be further simplified
for linear layers, where it suffices to validate (ii) for every leaf of L, scanning for common descendants
outside L. It is still necessary to ensure the vertical connectedness of layers explicitly, though.

The conditions above can be summarised into the statement that layers are vertically con-
nected subsets of hierarchies. An element x ∈ L is a root element of the layer L iff it is a

17Recall that attributes are string-valued functions on the set of elements.
18Note that λ must not be a partial function, i.e. we require that dom(λ) = E.
19Because of the vertical connectedness requirement introduced below, a leaf x ∈ L can have no descendants

in the same layer, i.e. O(x) ∩ L = {x}.
20The term linear layer refers to the linear axial precedence ordering on the boundary of L. Section 5

introduces horizontal distance, which is computed by projection to the boundary of a layer. This interpretation
of the boundary as a horizontal slice of a corpus is meaningful for linear layers only (although formally, the
leaves of any layer form a horizontal axis).

21This condition implies that no element x may have more than one parent in its layer: for two different
parents z1, z2 ↑ x, we have O(z1) ∩O(z2) ⊇ {x} 6= ∅.
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root element of the corresponding hierarchy H(L). Each root element x together with its
offspring within L (i.e. O(x) ∩ L) is called a component of the layer. Intuitively speaking, a
layer component is the connected “top part” of a component of the corresponding hierarchy.
A layer L is the disjoint union of its components. As such it can be serialised into a single
XML file (or a similar hierarchical data structure) by adding a common root element; or into
several files, one for each component.

Among the many hierarchies that can be defined in a corpus, only some will be of interest to
applications such as the query processor. Usually, these are the named hierarchies derived
from layers by setting H(nl) := H(λ−1(nl)) for every nl ∈ N . The metadata may also define
collections of layers and the corresponding collections of named hierarchies, especially
with a factorial layer design22 (Section 5 explains the usage of such collections).

4 Comments on metadata

The metadata associated with a NOM corpus can be split into two sets: core metadata,
which is required by the object model and defined in this document; and extended metadata,
which is described in [1] (and may be further extended by an implementation).

The core metadata consists of the element types T and the type mapping τ , pointer roles
R, as well as layer names N and the layer mapping λ. This information is not encoded in
the standard XML format defined in Section 6 and must be provided by separate metadata
documents (however, some of it such as the type mapping τ and part of the layer mapping λ
is implicit in the XML files).

The extended metadata should provide a list of attribute names (which are associated
with the attributes of the formal data model), information about linear layers, and named
collections of layers (and the corresponding hierarchies). For an XML serialisation of the
corpus, a list of files and a mapping from filenames to layers are also necessary. In addition to
this essential information, the extended metadata will include further information about the
corpus such as links to video and audio recordings and their relation to the common timeline,
date of each observation, lists of subjects and annotators, etc. (see [1] for details).

Note that the XML encoding assumes that element types, attribute names, and roles can be
represented as Unicode strings.

5 Summary of structural information

This section gives a summary of the explicit and implicit structural information encoded in a
NOM corpus, and specifies in what form it should be made available by an implementation
of the NITE object model (especially to the query, transformation, and data extraction mod-
ules). The specification of the NITE query language [4] uses the terminology and definitions
introduced here. There are six different kinds of structural information, which are detailed in
the following sections.

1. dominance (“vertical”) ordering, and vertical distance;
22A factorial design classifies layers according to several orthogonal dimensions such as agent, coding,

and annotator. Collections of hierarchies arise naturally as cross-sections along these dimensions, e.g. taking
all layers that belong to the same coding (but for different actors or made by different annotators).
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2. precedence (“horizontal”) ordering and sequential distance within each hierarchy;

3. horizontal distance obtained by projection to a horizontal axis;

4. multiple unrestricted pointer graphs; and

5. various temporal orderings that are derived from the timing information.

5.1 Dominance and precedence

An implementation of the NITE object model should provide direct access to the direct
dominance relation ↑ and its closure ↑∗ (or, equivalently, the dominance relation ⇑).
This includes functions that return, for any element x ∈ E, the sets of children Children(x),
parents Parents(x), descendants O(x), and ancestors A(x). The vertical distance between
two elements x ⇑ y is the length of the path from x to y in the parent-child graph, i.e.
|P (x, y)| − 1.

Precedence is defined either with respect to a named hierarchy (≺H) or with respect to a
tree identified by its root element x (≺O(x)). The sequential distance between two elements
x ≺H y in the hierarchy H is the number of maximal elements w between x and y, i.e.∣∣{w ∈ H ∣∣ x ≺H w ≺H y ∧ (6 ∃w′ ∈ H : w′ ⇑ w ∧ x ≺H w′ ≺H y)

}∣∣+ 1.

This definition of sequential distance is identical to the number of maximal regions between
x and y in an XML serialisation of the hierarchy H (plus one).

The definition and computation of the precedence relation and sequential distance with re-
spect to a hierarchy collection is a non-trivial task. The procedure outlined here gives a
well-defined results that should be consistent with the users’ intuitions when the hierarchy
collections is defined in an appropriate manner. For a given collection {Hi}i=1...n and two
elements x and y, the intersection of all hierarchies in the collection to which both x and y
belong also forms a hierarchy Hx;y:

Hx;y :=
⋂
{Hi | i = 1 . . . n ∧ x ∈ Hi ∧ y ∈ Hi}

We can now define that x precedes y wrt. to the hierarchy collection iff x precedes y in the
hierarchy Hx;y, i.e. x ≺{Hi} y ⇐⇒ x ≺Hx;y y. The sequential distance between x and y
is also defined wrt. to the hierarchy Hx;y. Note that when the collection consists of a single
hierarchy H1, we have Hx;y = H1 and hence ≺{H1}=≺H1 , so the definition above is indeed a
generalisation of the “ordinary” precedence relation ≺H .

5.2 Horizontal distance

The sequential distance between two elements x and y depends to a great extent on the
underlying hierarchy H. Especially when x and y are positioned at different “levels” within
a component tree, the resulting number may be counterintuitive. For instance, the distance
between two noun phrases in a syntax tree would be given by the number of maximal elements
in between (plus one), which can be a mixture of noun phrases, other maximal phrases, and
even single words. It would certainly be more natural to measure the horizontal distance
between noun phrases by the number of intervening words (“orthographic distance”).

This kind of horizontal distance can be defined generally by projection to a horizontal
axis A ⊆ H in a hierarchy H. Recall from Section 1.1 that the elements of A must belong
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to a single component of H and there must not be dominance relationships between them, so
that ≺H induces a linear axial ordering on A. The projection of an element x ∈ H (from
the same component tree) onto A is PA(x) := P↑A(x) ∪ P↓A(x), where P↑A(x) := A(x) ∩ A is
the upward projection and P↓A(x) := O(x)∩A the downward projection. (Note that one of the
two projections will be an empty set except for the case P↑A(x) = P↓A(x) = PA(x) = {x}.)

Given two elements x, y ∈ H with x ≺H y (so that both must belong to the same component
of H), and given that PA(x) 6= ∅ and PA(y) 6= ∅, then PA(x) and PA(y) are disjoint subsets of
A and the horizontal distance between x and y is the number of elements that fall between
PA(x) and PA(y) on the axis A (with respect to the axial ordering on A).

Remarks: PA(x) ∩ PA(y) = ∅ follows from the structural properties of the hierarchy H, especially the
unique path criterion. It should be noted that the horizontal distance of “adjacent” elements is 0,
whereas the corresponding sequential distance would be 1. Since the axis A is not required to be a
“horizontally connected” subset of H, it is possible that PA(x) = ∅ or PA(y) = ∅ even if x ≺H y. In
this case, the horizontal distance between x and y is undefined.

The horizontal axis A in the definition above can be (i) the boundary of a tree or hierarchy;23

(ii) the axis of all elements in a tree at a certain vertical distance d from its root element; or
(iii) the boundary of a linear layer (for a flat transcription layer joined by stream elements,
the boundary is identical to the layer itself).

It is desirable to generalise projections and the concept of horizontal distance to collections
of linear layers (instead of a single horizontal axis A), but it is not clear yet how this can be
achieved in a consistent and meaningful way.

5.3 Pointer graphs

For each role r ∈ R, the pointer relation defines an unrestricted directed pointer graph
→r⊆ E × E on E. The generic pointer graph →∗ is the union of all these graphs, i.e.

→∗ =
⋃
r∈R
→r =

{
(x, y) ∈ E × E

∣∣ ∃r ∈ R : x→r y
}

Note that a NOM implementation will usually not provide direct access to the closure of
pointer graphs or other advanced graph-theoretical functionality.

5.4 Temporal orderings

Several different orderings on the set of timed elements can be derived from the timestamps
associated with elements. All such orderings are represented by the symbol� in the discussion
below. For instance, strict temporal precedence (element x ends before y starts on the timeline)
is defined by

x� y :⇐⇒ fend(x) < fstart(y).

While this definition gives a strict partial ordering in the mathematical sense, other defini-
tions may produce non-transitive or non-antisymmetric relations (which can therefore not be
understood as a mathematical ordering relation). One example is ordering by start time:

x� y :⇐⇒ fstart(x) ≤ fstart(y).
23In order to apply the formal definition of the horizontal distance, A is restricted to the single component

to which elements x and y with x ≺H y must belong.
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This definition has the advantage that any two timed elements are comparable, but it is
obviously not antisymmetric (i.e. x � y ∧ y � x does not imply x = y). It is interesting to
note that a temporal ordering need not have a sequential nature as in the previous examples.
This is shown by the “hierarchical” containment ordering

x� y :⇐⇒ fstart(x) > fstart(y) ∧ fend(x) < fend(y).

Note that most orderings are phrased as a strict ordering because otherwise elements x and
y with identical timestamps would always compare equal (x � y and y � x), violating the
antisymmetry requirement for a partial ordering in the mathematical sense.

6 XML encoding

In the standard XML encoding, a NOM corpus is represented as a collection of XML docu-
ments, which can either be stored in memory (e.g. using a DOM implementation) or serialised
to XML files. Each XML file corresponds to a layer or layer component. The list of corpus
files, the definition of layer names and their mapping to file names, and the definition of layer
collections are part of the external metadata described in [1]. All attributes and elements with
a special meaning are in the NITE namespace

http://nite.sourceforge.net/24

which is conventionally mapped to the prefix nite: .

The elements and attributes defined in the object model translate directly into XML elements
and attributes. Element types are rendered as XML element names; likewise, attributes are
identified by XML attribute names. Every element is assigned a unique ID value (which must
at least be unique within the XML document containing it) stored in the nite:id attribute.
The time attributes fstart and fend are mapped to the XML attributes nite:start and
nite:end with their real-number values converted to a suitable floating-point representation.
The XML files may also contain text nodes accessible in the NOM by use of the text()
operator (cf. Section 2.6). If a corpus contains stream elements (cf. Section 2.3), they are
represented by XML elements with the name nite:stream, which may have no attributes
except for the required nite:id value.

Since XML documents are strictly hierarchical, the intersecting hierarchies of a NOM corpus
must be decomposed into a collection of tree-like structures, connected by additional links
in an XPointer-compatible stand-off annotation (the same stand-off annotation is used for
pointers). The standard XML encoding is based on the decomposition into layers described
in Section 3.

Every layer L is converted into a single XML document, inserting a root element named
nite:layer that is not part of the corpus data. This root element is necessary when L
has more than one component, but is also inserted for single components to make the XML

24This URL points to a project website for the NITE XML Toolkit (NXT) hosted by SourceForge. Although
the XML standard does not formally require that the web address identifying a namespace actually exists, it
is much better style (and helps to avoid name collisions) to use a URL that is under our control and to provide
some information about the NITE object model and XML format on the associated web page. This website
will also serve as a (more or less) permanent home for the NXT sourcecode after the end of the project.

An alternative solution would have been the use of a URN as namespace identifier. I believe that urn:

publicid:NITE:XML+1.0 would not have violated too many rules (cf. http://www.ietf.org/rfc/rfc3151.txt),
although in general URNs should be registered officially.
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document format more uniform.25 Alternatively, each component of the layer can be stored
in a separate document, again inserting a nite:layer element as root. Within each layer,
dominance and precedence relationships are represented by the structure of the XML docu-
ment. The children of an element x appear in their local precedence order ≺x in the body of
the XML element representing x. Any children that belong to a different layer (i.e. those in
the set Children(x) \ L) are replaced by special empty nite:child elements. Following the
XLink standard, the target of the nite:child link is given by an xlink:href attribute, with
a reference to an element ID in the local part.26 For instance,

<nite:child xlink:href="phones.xml#p 120"/>.

Links to consecutive elements in a single XML document can be combined into a range syntax:

<nite:child xlink:href="phones.xml#p 120..p 124"/>.27

The XML representation of an interior element contains no nite:child links, whereas the
representation of a leaf element contains only nite:child links. Note that for elements
which are neither interior elements nor leaves, the nite:child links must be inserted in
their appropriate places in the list of children. Pointers (cf. Section 2.4) are represented
by nite:pointer elements, which use the same xlink:href syntax as above and have an
additional role attribute specifying the pointer’s role. The nite:pointer elements may be
freely intermixed with any other element content; they are ignored when determining the
precedence ordering of the element’s children.

For the efficient processing of large corpora, the corpus data must be split into moderately-
sized files, which are then loaded only when necessary. With this load-on-demand strategy,
links to all parent elements and “inverse” pointers must be explicitly represented in the XML
format (otherwise, all files would have to be scanned for potential ancestors or pointer sources),
using nite:parent and nite:backpointer elements. These elements share the XLink syntax
of nite:child and nite:pointer. Like nite:pointer elements, they may appear anywhere
in the XML element’s body, and nite:backpointer elements must have a role attribute.
A corpus containing nite:parent and nite:backpointer elements is considered read-only,
and these elements must be stripped from the XML documents before any modifications are
made. Note that long observations can often be split up into “time slices” stored in separate
XML files, which are then recombined through a hierarchy of nite:stream elements in one
or more additional files.
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