
Guide to StyleSheet Writing in NITE NXT

GUIDE TO STYLESHEET WRITING IN NITE NXT..1
1. Introduction...1
2. Basic Concepts ...2
3. Simple Information Displays...2

Simple Demo 1 –InternalFrames, Panels and Labels...3
Simple Demo 2 –Tabbed Panes...4
Simple Demo 3 - SplitPanes..5
Simple Demo 4 -ScrollPanes...6
Simple Demo 5 –Lists ..7
Simple Demo 6 - TextAreas ..8
Simple Demo 7 –GridPane ..9
Simple Demo 8 – Trees..10

4. Examples using real corpora..12
Medium Example 1 –GridPanel for parts of speech and translation...12
Medium Example 2 – Indentation in TextAreas ..13
Medium Example 3 – Structured Data in Trees ...15
Medium Example 4 – Trees containing Grid Panes...16

5. Using the Time Highlighting Feature ...17
Timing with the Smartkom Data ...17
Timing with the Map Task Data..20

6. Specifying actions ..22
Introduction...22
Changing textual content in an element ..23
Change the value of an attribute in an element...24
Add a child to an element ..28
Add sibling to an element ..29
Delete an element from the xml...30

7. Future Work..31
8. Quick Reference Guide..32

1. Introduction

This document explains how to write xsl stylesheets which specify a layout for an
NXT interface. It contains a series of example stylesheets ranging from the simplest
interface containing only a label, to interfaces for displaying structured data from real
corpora. It also explains how to specify what action should be taken when the end
user clicks on buttons or menus in the interface. It is assumed the reader has working
knowledge of xml and xsl.

2. Basic Concepts

NITE NXT can be used to prototype user interface designs; to display structured data;
or to edit annotations of structured data. It is likely to be most useful to corpora
linguists or other researchers who wish to view structured data in a variety of ways for
analysis purposes. NXT is a java program which processes an xml meta-data input file
and outputs a user interface display. The meta-data file specifies which data and
information displays are available for the end user to work with. Data is usually
annotated observations from a linguistic corpus, in xml format. Information displays
are specified in xsl stylesheets. The end user chooses the data and display from the
interface shown in Figure 1.

Figure 1 – The NXT main display

When the user presses the “Go” button, the stylesheet processor in NXT transforms
the input xml data into an output xml file which specifies the user interface, using the
stylesheet selected by the user. This document explains how to write these stylesheets.

Every NITE stylesheet contains a tree of xml which specifies the interface in a
declarative way. The tree must begin with <Nite:Root> and end with </Nite:Root>.
The start and end of the display specification is delimited by <Nite:Display> and
</Nite:Display>. Every display component must be specified by
<Nite:DisplayObject>; the “type” attribute specifies which sort of component will be
used. A visual index to the display component types can be found in the quick
reference guide. The actions which will be taken when the user interacts with the
display components are contained in a <Nite:Action> subtree (see section Specifying
actions).

3. Simple Information Displays

Simple Demo 1 –InternalFrames, Panels and Labels

The root of the Nite display must be a single InternalFrame . This window appears
within the main NXT window, as shown in Figure 2. It can be resized and maximized
within the main window. All other Nite display components must appear on it. The
xsl snippet below shows how to specify an InternalFrame. The ImagePath attribute
specifies a path to an image which will be used as an icon in the title bar of the
InternalFrame. If this attribute is not supplied, the icon will default to a standard Java
icon. The text for the title bar is specified simply as the content of the
Nite:DisplayObject; in this case “An Internal Frame”.

<Nite:DisplayObject type="InternalFrame " ImagePath="Data\Images\smallcherry.gif ">

 An Internal Frame

</Nite:DisplayObject>
It is often useful to place display objects within a Panel because the resulting layout is
neater. A Panel placed within the InternalFrame in Figure 2. The Panel has a yellow
background colour. The xsl snippet below shows how to specify a Panel.

<Nite:DisplayObject type="Panel" background="yellow">

< /Nite:DisplayObject>

Another commonly used display component is a Label. Labels are generally used to
show single non-editable pieces of information, and can be embedded in more
complex data structures, such as GridPanes or Trees. Labels can be decorated with
images, and the font attributes for the text can also be altered. The xsl code below
shows how to create labels. As before, the ImagePath attribute specifies where to find
the image which will be used for the icon on this display object (in this case a picture
of a cherry, as show in Figure 2). If no image path is specified, the label will be text-
only. The FontStyle attribute specifies the font style for the label text. Possible values
are “Bold”, “Italic” and “Plain”. If no FontStyle is specified, it will default to Plain.
The FontSize attribute specifies the size of the label text. The attribute value must be
an integer . The Font attribute specifies the name of the font to be used. The default is
Times New Roman. Note: be careful to specify only fonts which are installed in the
end user’s computer. The ToolTip attribute is used to set the tooltip text which
appears when the end user hovers the mouse over a display object. The text for the
label appears in the content of the Nite:DisplayObject, in this case “A test label”.
<Nite:DisplayObject type="Label" FontStyle="Italic " Font="Arial"
FontSize="16" tooltip="Label" ImagePath="Data\Images\cherry.gif">

A test label

</Nite:DisplayObject>

The complete display object tree which specifies the interface in Figure 2 is
SimpleDemo1.

Figure 2- Output of SimpleDemo1.xsl . A Label inside a Panel inside an InternalFrame.

Simple Demo 2 –Tabbed Panes

SimpleDemo 2 demonstrates how to use a TabbedPane . The output of this stylesheet
is shown in Figure 3. This container is useful. when displaying several information
displays, only one of which is required to be active at any given time. A snippet of xsl
for specifying a TabbedPane is shown below:

<Nite:DisplayObject type="TabbedPane ">

</Nite:DisplayObject>

Figure 3 Simple Demo 2: A tabbed with four tabs displaying different pieces of information

There is no limit to the number of tabs in the TabbedPane. The only valid children for
TabbedPanes in the Nite:DisplayObjects tree are Panels, with one Panel for every tab.
The text and image at the top of the tab are specified by the content of the Panel
display object and its ImagePath:
<Nite:DisplayObject type="Panel" background="red"
ImagePath="Data\Images\smallbanana.jpg">

 Banana Pane
</Nite:DisplayObject>

Simple Demo 3 - SplitPanes

Simple Demo 3 demonstrates how to create a SplitPane . This type of display object
can be used for displaying two separate information displays where it is useful for the
end user to be able to adjust the prominence of one set of data. As shown in Figure 4,
the two information displays in a SplitPane are separated by a grey dividing line. The
user can drag the dividing line to make one of the displays larger or smaller. Xsl code
for specifying a SplitPane is shown below:

<Nite:DisplayObject type="SplitPane " split="horizontal">

</Nite:DisplayObject>

The split attribute specifies whether the dividing line of the SplitPane should be
horizontal or vertical. The only valid children for a SplitPane in the
Nite:DisplayObject tree are Panels, and a SplitPane can contain only two panels.

Figure 4 - Simple DisplayDemo 3. An internal frame containing a split pane. Each split contains a
pane with a label.

Simple Demo 4 -ScrollPanes

Simple Demo 4 demonstrates the use of a ScrollPane . ScrollPanes are useful for
information displays which contain more information than can be visible on the
screen at one time. When placed on a ScrollPane, a display object appears with scroll
bars along the right and bottom if necessary. Figure 5 shows a series of panels on a
ScrollPane. The InternalFrame has been resized by the end user so that it is necessary
for the ScrollPane to show its scroll bars at the right and bottom. A snippet of Xsl for
specifying a ScrollPane is below:

<Nite:DisplayObject type="ScrollPane">

</Nite:DisplayObject>

Figure 5 - . SimpleDemo4. Four Panels vertically arranged in a ScrollPane. In this case the user
has resized the Internal Frame which contains the ScrollPane, which has forced the scroll bars to
become visible so that all the contents of the ScrollPane can be reached

Simple Demo 5 –Lists

Simple Demo 5 illustrates the use of Lists. Lists are used to show vertical lists of
related pieces of information. In this example, the lists are simple, non-editable, non-
interactive displays (see Specifying to find out how to handle user events on Lists).
Lists can contain only Labels which specify single pieces of information. Figure 6
shows the output of Simple Demo 5 which specifies two lists on a SplitPane. Example
xsl code for specifying lists is shown below:

<Nite:DisplayObject type="List">

</Nite:DisplayObject>

Figure 6 - SimpleDemo5. A SplitPane containing two lists. One list has labels with images, the
other has labels with plain text.

Simple Demo 6 - TextAreas

Simple Demo 6 illustrates the use of TextAreas. TextAreas are used to display
documents. A TextArea can contain any number of FontStyles and TextElements.
FontStyles specify how text should be displayed, while TextElements specify the text
itself along with the Font Style which should be used to display it. Figure 7 shows an
example TextArea (also with a label for decoration). The document in the TextArea
has 4 different FontStyles: large green bold text; blue text; red text and normal black
text. It has several TextElements, e.g. “Wisdom from the man who brought you the
Cat in the hat”; “I like”; “nonsense”; “, it wakes up the brain cells.....”. Whenever a
change is style is required, a new TextElement is specified. The xsl which specifies
the TextArea in Simple Demo 5 is shown below:
<Nite:DisplayObject type="TextArea">

<Nite:DisplayObject type="FontStyle " name="bluestyle "
textcolour="Blue " FontSize="14" />

<Nite:DisplayObject type="FontStyle " name="greenstyle "
textcolour="Green" font="Roman" FontStyle="Bold"
FontSize="20" />

<Nite:DisplayObject type="FontStyle " name="redstyle "
textcolour="Red" font="Roman" FontStyle="Regular"
FontSize="12" />

<Nite:DisplayObject type="FontStyle " name="normalstyle "
textcolour="Black" font="Roman" FontStyle="Regular"
FontSize="12" />

<Nite:DisplayObject type="TextElement" style="greenstyle ">

 Wisdom from the man who brought you
the Cat in the Hat

 <xsl:text ></xsl:text >

 </Nite:DisplayObject>

 <Nite:DisplayObject type="TextElement"
style="normalstyle ">I
like</Nite:DisplayObject>

 <Nite:DisplayObject type="TextElement"
style="bluestyle ">nonsense</Nite:DisplayO
bject>

 <Nite:DisplayObject type="TextElement"
style="normalstyle ">, it wakes up the
brain cells. Fantasy is a necessary
ingredient in living. It's a way of looking
at life through the wrong end of the
telescope. And that enables you
to</Nite:DisplayObject>

 <Nite:DisplayObject type="TextElement"
style="bluestyle ">laugh</Nite:DisplayObject
>

<Nite:DisplayObject type="TextElement"
style="normalstyle ">

 at life's realities.

 <xsl:text ></xsl:text >

 </Nite:DisplayObject>

 <Nite:DisplayObject type="TextElement"
style="redstyle ">Dr
Seuss</Nite:DisplayObject>

 </Nite:DisplayObject>

 </Nite:DisplayObject>

Figure 7 - An internal frame displaying a panel which contains a label and a text area.

Simple Demo 7 –GridPane

GridPanes are useful for displaying information in a structured tabular format.
SimpleDemo7 illustrates how to use it for a simple example; for more examples using
real corpora data see Medium Example 1 –GridPanel for parts of speech and
translation. The output of the stylesheet is shown in Figure 8.

Xsl code for specifying a GridPanel is show below.

<Nite:DisplayObject type="GridPanel" Border="true " Columns="4" background="white">

</Nite:DisplayObject>

The Border attribute specifies whether each entry in the GridPanel is surrounded by a
border or not. The Background attribute specifies a background colour for the
GridPanel (default is grey). The Columns attribute specifies how many columns are in
the GridPanel. In this case there are four. The only legal child type for GridPanes in
the Nite:DisplayObjects tree is GridPanelEntry.

Example code for specifying a GridPanelEntry is shown below:

<Nite:DisplayObject type="GridPanelEntry " ColSpan="1" RowSpan="1">

</Nite:DisplayObject>
The ColSpan attribute specifies how many of the GridPanel’s columns should be used
up by this GridPanelEntry. The RowSpan attribute does the same for the rows. The
default value for both attributes is 1 i.e. GridPanelElements usually take up one cell of
the grid. Occasionally it is desirable for elements to span more than one column, as in
the star fruit picture in Figure 8. This was accomplished by setting ColSpan to 2.

Figure 8 -SimpleDemo7.xsl. An Internal Frame containing a GridPane with 4 columns and 2
rows. Each GridPaneEntry contains a label. Every GridPaneEntry takes up one cell, apart from
the star fruit label entry. It spans 2 columns because it is a big picture.

Simple Demo 8 – Trees

Hierarchical structured data can be represented in a Tree. A simple example of this
can be found in Simple Demo 8, while more complicated examples using real corpus
data can be found in Medium Example 3 – Structured Data in Trees. The output of the
SimpleDemo8 stylesheet is shown in Figure 9.

A Tree is specified thus:

<Nite:DisplayObject type="Tree">

</Nite:DisplayObject>

The only legal children for Trees in the Nite:DisplayObject tree are TreeNodes.
TreeNodes can contain TreeNodes (if they are branch nodes) or Labels, TimedLabels
or GridPanels (if they are leaf nodes). This is an example of a branch node:
<Nite:DisplayObject type="TreeNode">

 Creatures

</Nite:DisplayObject>

This is an example of a leaf node:
<Nite:DisplayObject type="TreeNode">

<Nite:DisplayObject type="Label" textcolour="red"
Font="Arial" FontSize="16" tooltip="A cute panda"
ImagePath="Data\Images\pandacloseup.jpg">

Red panda

</Nite:DisplayObject>

 </Nite:DisplayObject>

Figure 9 - SimpleDemo8.xsl A Tree on a ScrollPane on an Internal Frame. The tree contains
pictorial Labels as leaf nodes.

4. Examples using real corpora

The following example stylesheets are more complex than the Simple Demos because
they use data from real corpora: Smartkom and the Maptask.

Medium Example 1 –GridPanel for parts of speech and translation

Medium Example 1 shows how to use a GridPanel used to display data from the
Smarktkom corpus (see output in Figure 10). The Smartkom data contains original
German transcription from an audio track, part of speech for every German word, and
an English translation for every German sentence. The ColSpan attribute in
GridPanelEntry can be used to ensure that the German words and corresponding part
of speech are aligned, with the English translation for a whole sentence underneath all
of the words and parts of speech. This is accomplished using the following xsl
template:

<xsl:template match="utterance">

 <xsl:param name ="count" select="count(word[@type='W']) " />

- <Nite:DisplayObject type="GridPanel" Columns="{$count}" Border="true ">

- <xsl:for-each select="word">

- <xsl:if test="@type = 'W'">

- <Nite:DisplayObject type="GridPanelEntry " RowSpan="1"
ColSpan="1" position="fill">

- <Nite:DisplayObject type="Label" FontStyle="Arial"
FontSize="14">

 <xsl:value-of select="." />

 </Nite:DisplayObject>

 </Nite:DisplayObject>

 </xsl:if>

 </xsl:for-each>

- <xsl:for-each select="word">

- <xsl:if test="@pos != ''">

- <Nite:DisplayObject type="GridPanelEntry " RowSpan="1"
ColSpan="1" position="fill">

- <Nite:DisplayObject type="Label" FontStyle="Arial"
FontSize="12" textcolour="red">

 <xsl:value-of select="@pos" />

 </Nite:DisplayObject>

 </Nite:DisplayObject>

 </xsl:if>

 </xsl:for-each>

- <Nite:DisplayObject type="GridPanelEntry " RowSpan="1"
ColSpan="{$count}" position="fill">

- <Nite:DisplayObject type="Label" FontStyle="Arial" FontSize="14"
textcolour="blue ">

 <xsl:value-of select="@translation" />

 </Nite:DisplayObject>

 </Nite:DisplayObject>

 </Nite:DisplayObject>

 </xsl:template>

First of all, the template specifies a GridPanel with a column for every German word
in an utterance. This is achieved by counting how many matches there are for Words
of type “W” and setting the Columns attribute to this value.

There are then two loops to print out the German words and the corresponding parts
of speech.

The first loop iterates over all matches for “Word” of type “W” (which in this coding
scheme represents non-punctuation words). A label is created for every word, and
each label is placed on a GridPanelEntry which takes up one cell of the GridPanel.
The “position” attribute of the GridPanelEntry is set to “fill”, which means that the
contents of the entry should stretch horizontally to take up all the available space in
that cell. Another possible value of this attribute is “center” which means that the
content of the entry is placed in the middle of cell, with blank space around it.

The second loop iterates over all matches of Word of type which have a POS tag. It
creates a label to display the part of speech tag in red inside a GridPanelEntry of size
one GridPanel cell. This has the effect of placing the appropriate part of speech tag
directly underneath the matching word, as every word has a POS tag in the data.

Next a label with blue text colour is created for the English translation of the German
utterance. This is placed in a GridPanelEntry which has a ColSpan attribute set to the
number of columns in the GridPanel i.e. the label will span the whole length of the
utterance.

Figure 10 - MediumExample1.xsl. A ScrollPane containing a series of GridPanels displaying data
from the SmartKom Example. for the words, parts of speech and translation.

Medium Example 2 – Indentation in TextAreas

Medium Example 2 shows how to use TextAreas to display structured data using
indentation. The output of this stylesheet is shown in Figure 11. Utterances in the
Smartkom data are annotated with dialogue games. Games can be nested within other
games., so it is often useful to emphasise this structure in the display. This can be
achieved by setting tabs in the TextArea so that content within games is indented (this
can also be achieved using Trees).

The templates which specify the tab settings for the TextArea are shown below.
<xsl:template match="game">

 <xsl:param name ="tabDepth" select="0" />

- <Nite:DisplayObject type="TextElement" tabstop="{$tabDepth}"
style="gamestyle ">

 <xsl:value-of select="@type" />

 <xsl:text >game:</xsl:text >

 <xsl:text ></xsl:text >

 </Nite:DisplayObject>

- <xsl:apply-templates>

 <xsl:with-param name="tabDepth" select="$tabDepth + 1" />

 </xsl:apply-templates>

 </xsl:template>

The game template matches to dialogue game annotations in the xml data. It creates a
TextElement to display the type of the dialogue game in a FontStyle for displaying
games, and a tab stop attribute value of 0. The tab stop attribute specifies the level of
indentation for the TextElement. Top level games should not be indented, and so have
a tab depth of 0. The tab depth is incremented and passed as a parameter for other
matching templates.

A fragment of the matching utterance template is shown below. It uses the tab depth
parameter to set up a TextElement to display the speaker of the utterance at the
correct indentation – one tab after the game that the utterance belongs to.

<xsl:template match="utterance">

 <xsl:param name ="tabDepth" />

<Nite:DisplayObject type="TextElement" tabstop="{$tabDepth}"
style="movestyle ">

 <xsl:value-of select="@who" />

 </Nite:DisplayObject>

....

Figure 11 - . MediumExample2.xsl.The InternalFrame contains a TextArea which displays the
structure of the smartkom data using indentations. The translation of each utterance is displayed
under the data in red italic style.

Medium Example 3 – Structured Data in Trees

Trees can also be used to display hierarchical structured data. Medium Example 3
shows how to display the dialogue game structure of the Smartkom data in a Tree.
The output of this stylesheet is show in Figure 12. The Tree uses custom icons. This is
specified as follows:

<Nite:DisplayObject type="Tree" ExpandedImage="minus.gif " CollapsedImage="plus.gif "
OpenImage="" ClosedImage="">
The expanded and collapsed icons are used to indicate whether tree nodes are hiding
more nodes within them, or whether they are fully expanded. In this case, no open or
closed images are specified.

Recursive templates are used to populate the Tree so that the structure of the Tree
mirrors the structure of the dialogue games in the xml data. The game template
recursively creates a TreeNode for every dialogue game labeled with the game type.
The utterance template creates leaf nodes in the tree with Labels displaying words in
the utterance.

Figure 12 - A Tree on an Internal Frame. The tree represents the structure of the smartkom
dialogue data. The words uttered by system and user are leaf nodes. The icons for the tree have
been customised.

Medium Example 4 – Trees containing Grid Panes

Medium Example 4 shows how to show structured data in a way which gives an
overview of the structure of the data as well as detailed information (see Figure 13).
Trees are used to illustrate the structure of the dialogue moves in the Smartkom data
while GridPanes are used to show details of each utterance, including parts of speech
tags and a translation. This is achieved in a similar way to the previous example
(Medium Example 3 – Structured Data in Trees), except that in the utterance
template, the leaf TreeNodes contain GridPanes. The GridPanes are specified in the
same way as Medium Example 1 –GridPanel for parts of speech and translation.

Figure 13 - A Tree containing GridPanels as leaf nodes. This allows both a view onto the
structure of the dialogue as well as detailed information each utterance, including parts of
speech.

5. Using the Time Highlighting Feature

NITE NXT enables the end user to synchronize a video or audio track with a textual
transcription . When the user clicks on the “Synchronize to text” checkbox on the
video or audio window (see Figure 14), text in the information display which matches
the current time on the video will be highlighted. The green highlighter moves
through the information display as the video advances. To achieve this, the stylesheet
must specify start and end times for display objects which should be synchronised
with the clock. The next sections illustrate how this can be done using the Smartkom
and Maptask corpora.

Timing with the Smartkom Data

The Smartkom data is annotated for time at an utterance level. This means that
sentences rather than individual words have associated timing information.

In Time Example 1, the data is displayed in a GridPane, using similar code to
Medium Example 1 –GridPanel for parts of speech and translation. However, the
labels which display the German words are a special type of label – TimedLabels.
TimedLabels work in the same way as Labels except they have additional attributes:
start and end, the start and end times of the time scope of this display object. Each
TimedLabel within a GridPanel for an utterance uses the start and end time of the
utterance so that they are all highlighted simultaneously. Neither the parts of speech
tags nor the translation use TimedLabels because these are additional pieces of
annotation information which are not aligned to the video signal. Note that the

GridPane and the GridPaneEntries do not contain timing information; this is delegated
to the TimedLabels contained within them.

Figure 14 - TimeExample1.xsl. A GridPane showing smartkom data. The utterance currently
spoken on the video is highlighted in green in the GridPane.

Figure 15 shows how timing information can be displayed on Trees using
TimeExample2. Leaf nodes within time scope are highlighted in green. The tree nodes
collapse automatically to show child nodes within time scope. This is accomplished
simply by altering the Medium Example 3 – Structured Data in Trees stylesheet so
that is uses TimedLabels rather than Labels as leaf nodes.

Figure 15 - TimeExample2.xsl. The smartkom data represented in tree form with the utterance
currently spoken on the video highlighted in green.

TimeExample3 illustrates how the Medium Example 4 – Trees containing Grid Panes
stylesheet can be adapted to denote time, as shown in Figure 16. Once again, this is
accomplished by changing the Labels within the GridPanelEntries to TimedLabels.

Figure 16 - TimeExample3.xsl. The smartkom data represented in GridPanes as TreeNodes. The
currently spoken utterance is highlighted in the appropriate top row of the GridPane element in
green.

TimeExample4 shows how to specify that TextElements within a TextArea should be
highlighted when in time scope. This is achieved by adapting the stylesheet Medium
Example 2 – Indentation in TextAreas so that the TextElements specify start and end
attributes representing when the elements come in and out of time scope.

Figure 17 - TimeExample4.xsl. The smartkom data is displayed as indented text on a TextArea.
The TextElements are time aligned, so that the transcription is highlighted when the
corresponding bit on the video is reached.

Timing with the Map Task Data

The MapTask corpus has more detailed timing information than the Smartkom data.
Each word in the Maptask is a timed unit with start and end times specified. This
makes it possible to sychnronize the transcription display to the audio/video signal
more accurately, as shown in Figure 18, Figure 19 and Figure 20. Stylesheets
MapTaskTimeExample1, MapTaskTimeExample2 and MapTaskTimeExample3
illustrate how to achieve this.

Figure 18 - MapTaskTimeExample1.xsl. A tree containing GridPanels to show the map task
dialogue structure. The GridPanels are used to arrange the timed units horizontally next to each
other to make them easier to read. The green highlight denotes the transcription

Figure 19 - MapTaskTimeExample2.xsl A Tree showing the map task games and moves. The
green highlighted leaf node is the transcript of the currently spoken word on the audio track.

Figure 20 - MapTaskTimeExample3.xsl A TextArea using indentations to show the structure of
the dialogue. The Text Elements are aligned to time, so the grey highlight denotes that the audio
track has reached an utterance corresponding to that word in the transcription

6. Specifying actions

Introduction

In addition to specifying the layout of NXT interfaces which allow a user to view the
data, it is possible to specify edits or actions which the user can perform on the NXT
interface. These allow the user to edit the underlying xml data. At the current time, we
recommend that stylesheets with action specifications should be used only with small
datasets as performance problems inherent in the stylesheet processing approach make
action execution very slow. At present, stylesheets with actions can be used on small
data sets, or as a prototyping tool. We suggest that users who work with large datasets
should use the NITE display objects library to write java programs for displaying and
editing data. The java classes for handling editing actions on the XML are used by
NXT to create an interface from the xsl specification, and so this document also
serves as a useful introduction to the java functionality.

There are five actions which can be performed on the underlying xml data: change
textual content of an element; change attribute value in an element; add a child to an
element; add a sibling to an element; and delete an element. These actions can be
performed on either simple (JDOM) or standoff (NOM) xml files. Examples of each
of these actions in the simple xml case will be discussed in the following sections.

There are many ways in which a user could indicate which action should be
performed on each element. The main assumption in the user interface design is that
the user must select an element by clicking on a representation of it on the user
interface with the left mouse button. Once an element is selected the user can invoke

an action by right clicking with the mouse or pressing a key. Some actions can be
performed on the underlying data immediately. Others require further input from the
user such as a new value for an attribute, or new textual content. The NITE display
library provides various basic means of eliciting this information from the user, by
pop-up menus and dialogue boxes. We intend to extend this library in the future.

Changing textual content in an element

The simplest example of editing xml from the interface is in ActionDemo1.xsl. Note
that many of the examples for actions use the animals.xml data file for the sake of
simplicity. The stylesheet specifies an interface which displays each of the animals
from the data in a list with the textual content of each animal element in brackets after
the animal name. When the user selects a list entry and presses the “change element
content” button (see Figure 21), a dialogue pops up inviting the user to type in a new
value of the textual content of the element. Once the user presses “Ok”, the editing
action is executed, the underlying xml is changed, and the whole interface
specification is re-processed and redisplayed.

Figure 21 ActionDemo1. Change textual content

This is achieved as follows. Firstly, the action must be specified in the xsl file after
the <nite:Root> element, and before the <nite:DisplayObject>s. In this example the
action specification looks like this:

- <nite:Root>

- <!-- definition of user input actions -->

- <nite:Actions>

- <!-- The action which causes the change textual content option pane to appear -->

 <nite:Action id="Action1" description="Change textual content for xml element "
dialoguebox="ChangeTextualContentOptionPane" source="List1" />

 </nite:Actions>

The only action for this display has the id “Action1”. The id field is required to
specify which action should be associated with which display object. The
“description” tag is used to explain what the action is intended for. The “dialoguebox”
tag specifies which method of getting user input to complete the action will be used.
In this case, as the user has to type in new text for the textual content of an element,
the ChangeTextualContentOptionPane is used. This display object from the library
produces the dialogue box shown in Figure 21. The “source” tag refers to the ID of a
display component in which the user will have selected the element for editing. In this
case, it refers to List1.

Having specified what should happen when Action1 is executed, we also need to
specify how Action1 should be triggered. This is done by specifying an action
reference within the display object which should trigger the action to be executed. In
this example, the action happens when the button with the id of “Button1” is pressed,
as shown below. The nite:ActionReference specifies an actionID which is “Action1”,
the ID of the action we set up above.

- <nite:DisplayObject id="Button1" type="Button" FontStyle="Italic " Font="Arial" FontSize="16"
tooltip="Button">

- <!--
 specifies that the action which is triggered by this button has the ID Action1

 --> <nite:ActionReference actionID="Action1" />

- <!--
 The content to be displayed on the button

 -->

 Change element content

 </nite:DisplayObject>

Change the value of an attribute in an element

The user often needs to change the value of an attribute of an xml element. Example
stylesheets ActionDemo2.xsl , ActionDemo3.xsl and ActionDemo4.xsl illustrate three
different interfaces for carrying out this action.

Figure 22 illustrates the interface which is built from the specification in
ActionDemo2.xsl. Each animal element is displayed on the list with the animal name
followed by the value of the “Habitat” attribute in brackets. The user has clicked on
the “Change Habitat” button which has triggered the dialogue box to appear. The
dialogue box allows the user to enter a new value for the habitat attribute on the
selected animal element. Once the user clicks on “enter”, the xml is updated and the
interface is redisplayed.

Figure 22 ActionDemo2. Changing an attribute value using an option pane

The action is specified in a similar way to the change textual content action in the
previous example. The action specification in the xsl is shown below:

<nite:Action id="Action1 " description="Change attribute value for xml element"
dialoguebox="ChangeAttributeValueOptionPane " source="List1" attribute="Habitat" />

This time the “dialoguebox” tag specifies a ChangeAttributeValueOptionPane display
object which is shown in Figure 22. There is an additional tag “attribute” which is
used to specify which of the attributes in an element should edited. In this case, the
attribute “habitat” can be edited. Note that this assumes that a component will display
elements of the same type, or at least that all eleme nts which might be displayed in
the component share an attribute specified by this tag. If this assumption does not
hold, another of the display objects from the library will be more suitable. The action
reference is specified in the same way as in the change textual content example.

Figure 23 shows another way to change an attribute value of an element. This method
would be suitable in cases where the attribute values should be constrained rather than
freely typed. The list has an entry for every species in the animals xml file, and the
covering of the species is denoted inside brackets. The user selects a species with a
left mouse click. Once an element is selected, a right mouse click will trigger a popup
menu which allows the user to select a new value for the “Covering” attribute: one of
fur, feathers, or scales. Once the right mouse button is released, the value of the
selected item on the popup menu will be used to update the underlying xml and the
interface will be refreshed.

Figure 23 Change attribute value of an element using a pop-up menu

The specification for the interface in Figure 23 is in ActionDemo3.xsl. This time the
type of dialogue box used is a “ChangeAttributeValuePopUp” which produces a
popup menu. The interesting section of the stylesheet is the specification of
nite:PopupContexts. These are used to populate the different options which will
appear on the popup menu. The “attribute” tag species that the attribute which will be
altered has the name “Covering”. The values for tags “option1”, “option2” and
“option3” will appear on the popup menu. Note that any number of options can be
specified for these popup menus – the tags should take the form “optionN”, where N
is the position in the list where this option should appear.

- <nite:Action id="Action1" description="Change attribute value for xml element"
dialoguebox="ChangeAttributeValuePopUp" source="List1">

- <nite:PopupContexts>

 <nite:PopupContext attribute="Covering" option1="Fur" option2="Feathers " option3="Scales" />

 </nite:PopupContexts>

 </nite:Action>

This time the action is triggered by the xsl code shown below:

<nite:ActionReference actionID="Action1" keybinding="right_mouse" />

As well as specifying which actionID is associated with the component, a keybinding
is also specified. The value “right_mouse” indicates that the action should be
triggered by a right mouse click. “Left_mouse” would also be valid. The keybinding
tag could alternatively be used to specify a keyboard key which triggers an action –
this will be discussed further in the DeleteElement example.

Naturally, the actions can be used with components other than lists. Figure 24 shows
an interface where data is displayed on a text area, and the user can edit the value of
attributes using a popup menu. The animal element from the animal data are displayed
with their names in red and their habitat in blue. When the user selects an element and
right clicks on it, a popup menu appears. The options in the popup menu depend on
which part of the text area is selected. When a habitat is selected, as shown in the
figure, the popup menu options are related to habitat – Cannonmills, Leith and New
Town (areas of Edinburgh). If the user had clicked on an animal’s name, the popup
menu would have contained Ringo, John, Paul and George. When the user releases
the right mouse button, the xml is updated and the interface is redisplayed.

Figure 24 Change attribute values using popup menus on a text area

This example interface is specified in the stylesheet ActionDemo4.xsl. The code
which specifies the action is below:

<nite:Action id="Action1" description="Change attribute value for xml element"
dialoguebox="ChangeAttributeValuePopUp" source="TextArea1">

- <nite:PopupContexts>

 <nite:PopupContext attribute="name" option1="Paul" option2="John" option3="Ringo"
option4="George" />

 <nite:PopupContext attribute="Habitat" option1="Canonmills " option2="Leith" option3="New Town"
/>

 </nite:PopupContexts>

 </nite:Action>

It specifies that the source for selected elements which need edited is TextArea1.
There are two popup contexts in the action, because the popup menu will display
different actions depending on what is selected in the text area. If a name attribute is

selected, the options should be Paul, John, Ringo or George. If a habitat attribute is
selected, the popup options are Canonmills, Leith and NewTown.

The context sensitive menu population relies on the text elements knowing which
attribute of an element which they are displaying. The same element may be
represented in the display by many different objects. In this case, many text elements
could display different attributes of the same element. This is accomplished by the
“displayAttribute” tag on the text elements, as shown below:

<nite:DisplayObject type="TextElement" tabstop="{$tabDepth + 1}" style="habitatstyle "

displayAttribute="Habitat">
 <xsl:value-of select="@Habitat" />

 </nite:DisplayObject>

This specifies that the text element should be indented by one tab stop, that it should
be displayed in the habitat text style, and that the attribute of the element displayed by
the text is “Habitat”. The text itself is the value of the Habitat attribute.

Add a child to an element

Although it is useful to change attribute values of xml elements, the user might also
want to edit the structure of the xml document by adding children. Figure 25 shows an
example interface where the user can create a new child for an element. The species,
animals and young from the animal data are displayed in a tree structure. The user has
selected the element Rebecca (this is indicated by the red text colour on the selected
node). A right mouse click has triggered the dialogue box for creating a new child to
add to the selected element. As Rebecca already has the child Baby, the dialogue box
has been populated with the attributes from this element. As Baby has the element
name “young”, the default value for the new child’s element name is also “young”. It
is also assumed that the new child will need the attributes name, ID and habitat. If the
user wanted to add a child to an element with only one child, the dialogue box would
have been populated with the attribute names and element name from the parent,
Rebecca. We intend to create further library objects for cases where these
assumptions do not hold. Once the user has typed in the values for the new child, she
can press “Ok”, the xml will be updated, and the stylesheet will be redisplayed.

Figure 25 Add a new child to an element

This interface is specified in the stylesheet ActionDemo7.xsl. The code for specifying
the action is shown below:

<nite:Action id="Action1" description="Add child to xml element "

dialoguebox="AddChildOptionPane " source="Tree1" />

The dialoguebox is AddChildOptionPane, which appears as shown in Figure 25. The
action reference is specified as follows:

<nite:ActionReference actionID="Action1" keybinding="right_mouse" />

Each tree node displays an element of data and specifies which attribute of the data it
represents on screen, as follows. The IDs for the displayobjects are generated from the
element names.

<nite:DisplayObject type="TreeNode" id="TreeNode{@name}">

- <nite:DisplayObject type="Label" id="Label{@name}" displayAttribute="name">

 <xsl:value-of select="@name" />

 </nite:DisplayObject>

Add sibling to an element

There are cases where it might be more convenient for the user to add a sibling to an
element, rather than to add a new child to the parent of that element. This can be
achieved with the addSibling action. An example of this action is shown in Figure 26.
The user has selected the element “Bob” and has right clicked with the mouse to
trigger the addSibling action. The add new sibling dialogue box allows the user to
enter attribute values and element name. The attribute names are copies of the

attributes in the selected element, and the element name value defaults to the element
name of the selected element. When the user clicks on the OK button, the xml is
updated, and the interface is redisplayed.

Figure 26 Add a sibling to an element using a tree representation

The stylesheet ActionDemo8.xsl produces the interface shown in Figure 26. The
stylesheet is identical to ActionDemo7.xsl, except for the specification of the
addSiblingOptionPane instead of the addChildOptionPane:
<nite:Action id="Action1" description="Add sibling to xml element"
dialoguebox="AddSiblingOptionPane " source="Tree1" />

Delete an element from the xml

Users may also wish to delete elements from the underlying data. There is no
screenshot example because it is difficult to depict! An example delete element
specification can be found in ActionDemo9.xsl. In this example, the animals from the
animal data are represented in a tree view, as in the previous example. When the user
selects an element and presses the delete key, the selected element is deleted from the
xml, and the interface is redisplayed.

The delete element action is specified with the following xsl:
<nite:Action id="Action1" description="Delete an xml element" dialoguebox="DeleteElement"
source="Tree1" />

The “dialoguebox” tag is set to DeleteElement. This means that when the action is
triggered, the DeleteElement action should be carried out on the selected element
(dialoguebox is possibly not the best name for this tag). The action reference is
specified as shown below. This time the keybinding, the interface input which triggers
the action, is set to “Delete”. This refers to the delete key on the keyboard. The

keybinding tag can be used with any of the other actions and option panes. The key
can be set to any keyboard key, such as “F2”, “Space”, “Shift”, or “A” (see
http://java.sun.com/products/jdk/1.2/docs/api/java/awt/event/KeyEvent.html#getKey
ModifiersText(int)).
<nite:ActionReference actionID="Action1" keybinding="Delete" />

7. Future Work

The NITE display library is not yet complete. We intend to add further library
components, which will mostly be used for actions. Here are some additional
stylesheet examples which we intend to make:

• Example interface with actions for performing all five edits on the xml.

• Example interface which allows the user to alter a tree structure using cut
and paste to add children to elements.

• Example interface which allows structural changes on the xml(add child,
add sibling and deleteElement) on a text area.

• Example interface which allows add xml edits to be carried out with a grid
panel.

8. Quick Reference Guide

Example Type Swing peer Legal Parent Legal Children Parameters

InternalFrame JInternalFrame None Panel

ScrollPane

SplitPane

TabbedPane

Label

TimedLabel

List

Button

Checkbox

GridPane

TextArea

Tree

ImagePath

background

Panel JPanel InternalFrame

Panel

ScrollPane

SplitPane

Panel

InternalFrame

ScrollPane

SplitPane

TabbedPane

Label

TimedLabel

List

background

Button

Checkbox

GridPane

TextArea

Tree

TabbedPane JTabbedPane InternalFrame

Panel

ScrollPane

SplitPane

Panel background

ScrollPane JScrollPane InternalFrame

Panel

Panel

InternalFrame

ScrollPane

SplitPane

TabbedPane

Label

TimedLabel

List

Button

Checkbox

GridPane

TextArea

Tree

Note: The green arrow is pointing to the split pane

divider (split), which is vertical

SplitPane JSplitPane Internal Frame

Panel

ScrollPane

Panel

Restriction: only
two panels may be
added to a split
pane

Background

split

Label JLabel Any None background

textcolour

FontStyle

Font

FontSize

ToolTip

ImagePath

TimedLabel NTimedLabel Any None background

textcolour

FontStyle

Font

FontSize

ToolTip

ImagePath

Start

end

CheckBox JCheckBox Any None Background

textcolour

FontStyle

Font

FontSize

ToolTip

List JList Any Label

TextArea NTextArea (
extension of
JTextPane)

InternalFrame

Panel

TextElement

FontStyle

Specifies how a piece of text should be printed on
screen, not visible by itself

FontStyle Style TextArea None Name

textcolour

FontSize

Font

FontStyle

The text highlighted in yellow is a single TextElement

TextElement N/A TextArea None style

start

end

Tree NTree (extension of
JTree)

Panel

ScrollPane

InternalFrame

TreeNode ExpandedImag
e

CollapsedImag
e

OpenedImage

ClosedImage

TreeNode NTreeNode
(extension of
DefaultTreeNode)

Tree

TreeNode

TreeNode

Label

TimedLabel

GridPane

start

end

GridPanel A JPanel using the
PnutsLayoutManager

ScrollPane

InternalFrame

Panel

GridPanelEntry Columns

border

background

GridPanelEntry N/A GridPanel Label

TimedLabel

RowSpan

ColSpan

position

