Guideto StyleSheet Writingin NITE NXT

GUIDE TO STYLESHEET WRITING IN NITE NXT ..cooiiiiiiiieeeesnreeeeeee e

IO 11 0o (1 o 1 o o OSSR
P 2T S Lol 0 001 o £
3. SIMPIE INfOrMELiON DISPlAYS....cccveriererirerieeerirerisis st ettt sste e senas
Simple Demo 1—InternalFrames, PanelS and LabelS.........ovvvvvvvnnssnssssssessessssesesseseses
Simple Demo 2—Tahhed Panes..........ccv sttt ssss et
SIMple DemMO 3- SPHLPANES.........ooieirrrcee st
SIMPIE DEMO 4-SCrOlIPANES........ccieiererireris s en
SIMPIE DEMO 5SS ..vviririeirriscirie sttt
SIMPIE DEMO B- TEXLATEBS ...ttt en
SIMPIEDEMO 7—GliPBNEcueerieeeiririreieie et sbs sttt ss et
S e o E A D= T I Ee I (= =P
4, EXampPleS USING FE8I COMPOTA......ccuiviiriririririsestse st st sttt st st s s s s s s s s
Medium Example 1 —GridPanel for parts of speech and tranglation............ccccoceeeeeveeceeeeennnns
Medium Example 2— INdentation iN TEXLATEEScccceeiereieeieieieeieeieieeisieissssssesssssesesssssssessseseseses
Medium Example 3 — Structured Datain TIEES........cvvrrmreerrenieeisresesseeisesessssssssesessssssssesssssesseseans
Medium Example 4 — Trees containing Grid PanES..........ccceeeeiennnieeeeieee s eiesssssssesesesesenes
5. Using the Time Highlighting FEAtUIE...........coveirrncerreree et
Timing With the SMartkom Datal..........ccovrerrnerinnerecie e
Timing With the Map Task Daal........cccovvninininineneses sttt sttt
6. SPECIHTYING BCONScuvviririecee et b st bbbttt s bt nens
INEFOTUCTION....c.ect ettt bbb
Changing textual content in an ElEMENE ..o
Change the value of an attribute in an &ement...........coovvrrrrrnrrrr s
Add achild 0 8N BIEMENTcccuree e e
Add SIhING 0 8N BIEMENE ...t st
Delete an element from the XMl.........occreee e
T FULUFE WOTK ..ttt ettt s bbb bbb
8. QUICK REFEIENCE GUITE. ... ceteviese ettt e s b e s e st se bt eaese et e ne e e pene s

1. Introduction

This document explains how to write xgl stylesheets which specify alayout for an
NXT interface. It contains a series of example stylesheets ranging from the ssimplest

.3

interface containing only alabel, to interfaces for displaying structured data from real

corpora. It also explains how to specify what action should be taken when the end

user clicks on buttons or menusin the interface. It is assumed the reader has working

knowledge of xml and xdl.

2. Basic Concepts

NITE NXT can be used to prototype user interface designs; to display structured data;
or to edit annotations of structured data. It is likely to be most useful to corpora
linguists or other researchers who wish to view structured datain avariety of ways for
analysis purposes. NXT is ajava program which processes an xml meta-data input file
and outputs a user interface display. The meta-data file specifies which data and
information displays are available for the end user to work with. Datais usually
annotated observations from a linguistic corpus, in xml format. Information displays
are specified in xd stylesheets. The end user chooses the data and display from the
interface shown in Figure 1.

Figure1—TheNXT main display

When the user presses the “Go” button, the stylesheet processor in NXT transforms
the input xml data into an output xml file which specifies the user interface, using the
stylesheet selected by the user. This document explains how to write these stylesheets.

Every NITE stylesheet contains atree of xml which specifiesthe interfacein a
declarative way. The tree must begin with <Nite:Root> and end with </Nite:Root>.
The start and end of the display specification is delimited by <Nite:Display> and
</Nite:Display>. Every display component must be specified by
<Nite:DisplayObject>; the “type” attribute specifies which sort of component will be
used. A visual index to the display component types can be found in the quick
reference gquide. The actions which will be taken when the user interacts with the
display components are contained in a<Nite:Action> subtree (see section Specifying
actions).

3. Simple Information Displays

Simple Demo 1 —InternalFrames, Panels and L abels

The root of the Nite display must be asingle InternalFrame. Thiswindow appears
within the main NXT window, as shown in Figure 2. It can be resized and maximized
within the main window. All other Nite display components must appear on it. The
xsl snippet below shows how to specify an InternalFrame. The ImagePath attribute
specifies a path to an image which will be used as an icon in the title bar of the
Internal Frame. If this attribute is not supplied, the icon will default to a standard Java
icon. The text for the title bar is specified simply as the content of the
Nite:DisplayObject; in this case “An Internal Frame”.

<Nite:DisplayObject type="lNnter nalFrame imagerath="Data\l mages\smallcherry.gif >

An Internal Frame
</Nite:DisplayObject>

It is often useful to place display objects within a Panel because the resulting layout is
neater. A Panel placed within the InternalFrame in Figure 2. The Panel has a yellow
background colour. The xdl snippet below shows how to specify a Panel.

<Nite:DisplayObject type="Pan el backgroundz"ye| low">
< /Nite:DisplayObject>

Another commonly used display component isa L abel. Labels are generally used to
show single non-editable pieces of information, and can be embedded in more
complex data structures, such as GridPanes or Trees. Labels can be decorated with
images, and the font attributes for the text can also be atered. The xsl code below
shows how to create labels. As before, the ImagePath attribute specifies where to find
the image which will be used for the icon on this display object (in this case a picture
of acherry, asshow in Figure 2). If no image path is specified, the label will be text-
only. The FontStyle attribute specifies the font style for the label text. Possible values
are“Bold”, “Italic” and “Plain”. If no FontStyle is specified, it will default to Plain.
The FontSize attribute specifies the size of the |abel text. The attribute value must be
an integer . The Font attribute specifies the name of the font to be used. The default is
Times New Roman. Note: be careful to specify only fonts which areinstalled in the
end user’s computer. The Tool Tip attribute is used to set the tooltip text which
appears when the end user hovers the mouse over a display object. The text for the
label appearsin the content of the Nite:DisplayObject, in this case “A test label”.

<Nite:DisplayObject type="Label" FontStyle ="Italic" Font="Arial"
FontSize="16" tooltip="Label" ImagePath="Data\ Images\cherry.gif'>

A test label
</Nite:DisplayObject>
The complete display object tree which specifiesthe interfacein Figure 2 is
SimpleDemol.

NITE XML Toolki

/,,.n.

A leef fatiel

Figure 2- Output of SimpleDemol.xd . A Label insidea Panel inside an I nternalFrame.

Simple Demo 2 —Tabbed Panes

SimpleDemo 2 demonstrates how to use a TabbedPane. The output of this stylesheet
isshown in Figure 3. This container is useful. when displaying several information
displays, only one of which isrequired to be active at any given time. A snippet of xdl
for specifying a TabbedPane is shown below:

<Nite:DisplayObject type:"Tabb&j Pane >

</Nite:DisplayObject>

NITE XML Toolkin

Figure 3 Simple Demo 2: A tabbed with four tabsdisplaying different pieces of information

There is no limit to the number of tabs in the TabbedPane. The only valid children for
TabbedPanes in the Nite: DisplayObjects tree are Panels, with one Panel for every tab.
The text and image at the top of the tab are specified by the content of the Panel
display object and its |magePath:

<Nite:DisplayObject type="Panel" background="red"

ImagePath="Data\ Images\smallbanana.jpg">

Banana Pane
</Nite:DisplayObject>

Simple Demo 3 - SplitPanes

Simple Demo 3 demonstrates how to create a SplitPane. Thistype of display object
can be used for displaying two separate information displays where it is useful for the
end user to be able to adjust the prominence of one set of data. As shown in Figure 4,
the two information displaysin a SplitPane are separated by a grey dividing line. The
user can drag the dividing line to make one of the displays larger or smaller. Xsl code
for specifying a SplitPane is shown below:

<Nite:DisplayObject type:"Spl itPane- split ="horizontal>
</Nite:DisplayObject>

The split attribute specifies whether the dividing line of the SplitPane should be
horizontal or vertical. The only valid children for a SplitPane in the
Nite:DisplayObject tree are Panels, and a SplitPane can contain only two panels.

NITE XML Toalkit

Figure4 - Simple DisplayDemo 3. An internal frame containing a split pane. Each split containsa
panewith alabel.

Simple Demo 4 -ScrollPanes

Simple Demo 4 demonstrates the use of a ScrollPane. ScrollPanes are useful for
information displays which contain more information than can be visible on the
screen at one time. When placed on a ScrollPane, a display object appears with scroll
bars aong the right and bottom if necessary. Figure 5 shows a series of panelson a
ScrollPane. The Internal Frame has been resized by the end user so that it is necessary
for the ScrollPane to show its scroll bars at the right and bottom. A snippet of Xdl for
specifying a ScrollPane is below:

<Nite:DisplayObject type="SCr ollPane>

</Nite:DisplayObject>

NITE XML Toolki

| gy s

Figure5- . SimpleDemo4. Four Panelsvertically arranged in a ScrollPane. I n this casethe user
hasresized the I nternal Framewhich containsthe ScrollPane, which hasforced the scroll barsto
becomevisible so that all the contents of the ScrollPane can bereached

Simple Demo 5-Lists

Simple Demo 5illustrates the use of Lists. Lists are used to show vertical lists of
related pieces of information. In this example, the lists are simple, noneditable, nor+
interactive displays (see Specifying to find out how to handle user events on Lists).
Lists can contain only Labels which specify single pieces of information. Figure 6
shows the output of Simple Demo 5 which specifies two lists on a SplitPane. Example
xsl code for specifying listsis shown below:

<Nite:DisplayObject type:"L ist >

</Nite:DisplayObject>

NITE XML Toolki

@A bansna Jobal |-
' .

Figure 6- SimpleDemob5. A SplitPane containing two lists. Onelist haslabelswith images, the
other haslabelswith plain text.

Simple Demo 6 - TextAreas

Simple Demo 6 illustrates the use of TextAreas. TextAreas are used to display
documents. A TextArea can contain any number of FontStylesand TextElements.
FontStyles specify how text should be displayed, while TextElements specify the text
itself along with the Font Style which should be used to display it. Figure 7 shows an
example TextArea (also with alabel for decoration). The document in the TextArea
has 4 different FontStyles: large green bold text; blue text; red text and normal black
text. It has several TextElements, e.g. “Wisdom from the man who brought you the
Cat inthe hat”; “I like”; “nonsense”; “, it wakes up the brain céells.....”. Whenever a
changeis styleisrequired, anew TextElement is specified. The xsl which specifies

the TextAreain Simple Demo 5 is shown below:
<Nite:DisplayObject type="TextArea">

<Nite:DisplayObject type="FontStyle " name ="bluestyle"
textcolour="Blue" FontSize="14" />

<Nite:DisplayObject type="FontStyle" name ="greenstyle"
textcolour="Green" font="Roman" FontStyle ="Bold"
FontSize="20" />

<Nite:DisplayObject type="FontStyle" name ="redstyle"
textcolour="Red" font="Roman" FontStyle ="Regular"
FontSize="12" />

<Nite:DisplayObject type="FontStyle" name ="normalstyle"
textcolour="Black" font="Roman" FontStyle ="Regular"
FontSize="12" />

<Nite:DisplayObject type="TextElement" style ="greenstyle ">

Wisdom from the man who brought you
the Cat in the Hat

<xsl:text ></xsl:text >
</Nite:DisplayObject>

<Nite:DisplayObject type="TextElement"
style="normalstyle">1
like </Nite:DisplayObject>

<Nite:DisplayObject type="TextElement"
style ="bluestyle ">nonsense </Nite:DisplayO
bject>

<Nite:DisplayObject type="TextElement"
style="normalstyle ">, it wakes up the
brain cells. Fantasy is a necessary
ingredient in living. It's a way of looking
at life through the wrong end of the
telescope. And that enables you
to</Nite:DisplayObject>

<Nite:DisplayObject type="TextElement"
style ="bluestyle ">laugh</Nite:DisplayObject
>

<Nite:DisplayObject type="TextElement"
style="normalstyle ">

at life's realities.
<xsl:text ></xsl:text >
</Nite:DisplayObject>

<Nite:DisplayObject type="TextElement"
style ="redstyle">Dr
Seuss</Nite:DisplayObject>

</Nite:DisplayObject>
</Nite:DisplayObject>

NITE XML Toolkin

The caf ir ithg hal

Wisdom from the man who brought you the Cat in the Hat

| ika NONZENSe | ibwakas U 118 Deain ook Fanly o a necsssary ingnadientin lbng. I & way of
| ook g st 1ra Traup bt Wi Grd oTa falescopa. Andihat enabias yvau o 12000 otk realbes

DSy

Figure7- Aninternal framedisplaying a panel which containsalabel and atext area.

Simple Demo 7 -GridPane

GridPanesare useful for displaying information in a structured tabular format.
SimpleDemo? illustrates how to use it for a simple example; for more examples using
real corporadata see Medium Example 1 —GridPanel for parts of speech and
trangation. The output of the stylesheet is shown in Figure 8.

Xsl code for specifying a GridPanel is show below.

<Nite:DisplayObject typez"Gl’idPanel" Border="tr u€" columns="4" background =white">
</Nite:DisplayObject>

The Border attribute specifies whether each entry in the GridPanel is surrounded by a
border or not. The Background attribute specifies a background colour for the
GridPanel (default is grey). The Columns attribute specifies how many columns arein
the GridPanel. In this case there are four. The only legal child type for GridPanes in
the Nite:DisplayObjects tree is GridPanel Entry.

Example code for specifying a GridPanel Entry is shown below:

<Nite:DisplayObject type="GridPane| Entry" colspan="1" Rowspan="1">
</Nite:DisplayObject>

The Col Span attribute specifies how many of the GridPanel’ s columns should be used
up by this GridPanel Entry. The RowSpan attribute does the same for the rows. The
default value for both attributesis 1 i.e. GridPanel Elements usually take up one cell of
the grid. Occasionally it is desirable for elements to span more than one column, asin
the star fruit picturein Figure 8. This was accomplished by setting Col Span to 2.

NITE XML Toslkit B=E|

| Opisna Holy
e

R T |

i
#

-
A chamy fabel @ A harans labal . B mprte Tebal Arcrengu vl

Figure 8-SimpleDemo7.xd. An Internal Frame containing a GridPanewith 4 columnsand 2
rows. Each GridPaneEntry containsalabd. Every GridPaneEntry takesup onecéll, apart from
the star fruit label entry. It spans2 columnsbecauseit isa big picture.

SimpleDemo 8- Trees

Hierarchical structured data can be represented ina Tree. A simple example of this
can be found in Simple Demo 8, while more complicated examples using real corpus
data can be found in Medium Example 3 — Structured Data in Trees. The output of the
SimpleDemo8 stylesheet is shown in Figure 9.

A Treeis specified thus:

<Nite:DisplayObject type="1 I €€">
</Nite:DisplayObject>
The only legal children for Treesin the Nite:DisplayObject tree are TreeNodes.

TreeNodes can contain TreeNodes (if they are branch nodes) or Labels, TimedLabels

or GridPanels (if they are leaf nodes). Thisis an example of a branch node:
<Nite:DisplayObject type="TreeNode">

Creatures
</Nite:DisplayObject>
Thisis an example of aleaf node:
<Nite:DisplayObject type="TreeNode">

<Nite:DisplayObject type="Label" textcolour="red"
Font="Arial" FontSize="16" tooltip="A cute panda"”
ImagePath="Data\ Images\pandacloseup.jpg">

Red panda
</Nite:DisplayObject>
</Nite:DisplayObject>

¢ D el p
o= Furs
¥ H Featwrd

0 [T e e b Gl
P E] vy ey o sl

e
T
DM D4 B LIS 3 [D61 £ ol e
& magireny featterad meskies
F. -+

L&

Figure9- SimpleDemo8.xd A Treeon a ScrollPane on an Internal Frame. Thetreecontans
pictorial Labelsasleaf nodes.

4. Examples using real corpora

The following example stylesheets are more complex than the Simple Demos because
they use data from real corpora: Smartkomand the M aptask.

Medium Example 1 —-GridPanel for partsof speech and trandation

Medium Example 1 shows how to use a GridPanel used to display data from the
Smarktkom corpus (see output in Figure 10). The Smartkom data contains origina
German transcription from an audio track, part of speech for every German word, and
an English trandation for every German sentence. The Col Span attribute in
GridPanelEntry can be used to ensure that the German words and corresponding part
of speech are aligned, with the English trandation for a whole sentence underneath all
of the words and parts of speech. Thisis accomplished using the following xsl
template:

<xsl:template match="utterance">

<xsl:param name ="count" select="count(word[@type="W']) " />
- <Nite:DisplayObject type="GridPanel" Columns="{$count}" Border="true ">
- <xsl:for-each select="word">
- <xsl:if test="@type = "W''>

- <Nite:DisplayObject type="GridPanelEntry " RowSpan="1"
ColsSpan="1" position="fill">

- <Nite:DisplayObject type="Label" FontStyle ="Arial"
FontSize="14">

<xsl:value-of select="." />
</Nite:DisplayObject>
</Nite:DisplayObject>
</xsl:if>
</xsl:for-each>
- <xsl:for-each select="word">
- <xsl:if test="@pos != ">

- <Nite:DisplayObject type="GridPanelEntry " RowSpan="1"
ColSpan="1" position="fill">

- <Nite:DisplayObject type="Label" FontStyle ="Arial"
FontSize="12" textcolour="red">

<xsl:value-of select="@pos" />
</Nite:DisplayObject>
</Nite:DisplayObject>
</xsl:if>
</xsl:for-each>

- <Nite:DisplayObject type="GridPanelEntry" RowSpan="1"
ColSpan="{$count}" position="fill">

- <Nite:DisplayObject type="Label" FontStyle ="Arial" FontSize="14"
textcolour="blue ">

<xsl:value-of select="@translation" />
</Nite:DisplayObject>
</Nite:DisplayObject>
</Nite:DisplayObject>

</xsl:template>

First of al, the template specifies a GridPanel with a column for every German word
in an utterance. Thisis achieved by counting how many matches there are for Words
of type “W” and setting the Columns attribute to this value.

There are then two loops to print out the German words and the corresponding parts
of speech.

Thefirst loop iterates over all matches for “Word” of type “W” (whichin this coding
scheme represents non-punctuation words). A label is created for every word, and
each label is placed on a GridPanel Entry which takes up one cell of the GridPanel.
The “position” attribute of the GridPanelEntry is set to “fill”, which means that the
contents of the entry should stretch horizontally to take up al the available spacein
that cell. Another possible value of this attribute is “center” which means that the
content of the entry is placed in the middle of cell, with blank space around it.

The second loop iterates over all matches of Word of type which have a POS tag. It
creates alabel to display the part of speech tag in red inside a GridPanel Entry of size
one GridPanel cell. This has the effect of placing the appropriate part of speech tag
directly underneath the matching word, as every word has a POS tag in the data.

Next alabel with blue text colour is created for the English tranglation of the German
utterance. Thisis placed in a GridPanel Entry which has a Col Span attribute set to the
number of columnsin the GridPanel i.e. the label will span the whole length of the
utterance.

NITE XML Toolkit _ o] x|
Options Help
| 5 smartkom griged pane example ©7 o
fHerzich willkarmen eim Smartkom-Infarmationssystem Ich bin Alatidin =
J-0.0 ADJD BPPRART M PRER VAFIN NE
§ welcome to the Smartikom Information Service. My name is Aladdin, How can | help you?
fveiche Spielfilme laLfen denn heute Abend
BT [\FIN D Ay Y
IWh\ch feature films are on TY tonight?
Ih:h zeige ||Ihnen eine Uhersicht Ober die Filme die heute
e WFIN [prer [aRT NI APPR [aRT M [aRT D
fHiere is an overall view of the fims which are an T tonight.
foa st richts fir
Yo AFIN PIs APPR
II oo not fancy any of them.
IDann macht ich doch ”Meber ing
oy N FPER Dy | o APPRART

IThen | would prefer to go to the cinema instead.

IHIBI’

Sehen

Sie

Eing

Unersicht

nber

das

Programim

Yo

[VVFIN

PFER

ART

MM

EFPR

ART

N

IHEI’E 15 an overall view of what 15 showing at the Heidelberger Cinema

foen

wilrd

germ

| [

FIR

AD

§ wouia ke to see this

o

kommt

| +]

Figure 10 - MediumExamplel.xsl. A ScrollPane containing a series of GridPandsdisplaying data
from the SmartK om Example. for thewords, parts of speech and trandation.

Medium Example 2 — Indentation in TextAreas

Medium Example 2 shows how to use TextAreas to display structured data using
indentation. The output of this stylesheet is shown in Figure 11. Utterances in the
Smartkom data are annotated with dialogue games. Games can be nested within other
games., so it is often useful to emphasise this structure in the display. This can be
achieved by setting tabs in the TextArea so that content within games is indented (this
can also be achieved using Trees).

The templates which specify the tab settings for the TextArea are shown below.

<xsl:template match="game">

<xsl:param name ="tabDepth" select="0" />

- <Nite:DisplayObject type="TextElement" tabstop="{$tabDepth}"
style ="gamestyle ">

<xsl:value-of select="@type" />
<xsl:text >game:</xsl:text >
<xsl:text ></xsl:text >
</Nite:DisplayObject>
- <xsl:apply-templates>
<xsl:with-param name ="tabDepth" select="$tabDepth + 1" />
</xsl:apply-templates>
</xsl:template>
The game template matches to dialogue game annotations in the xml data. It creates a
TextElement to display the type of the dialogue game in a FontStyle for displaying
games, and atab stop attribute value of 0. The tab stop attribute specifies the level of
indentation for the TextElement. Top level games should not be indented, and so have

atab depth of 0. The tab depth isincremented and passed as a parameter for other
matching templates.

A fragment of the matching utterance template is shown below. It uses the tab depth
parameter to set up a TextElement to display the speaker of the utterance at the
correct indentation — one tab after the game that the utterance belongs to.

<xsl:template match="utterance">
<xsl:param name ="tabDepth" />

<Nite:DisplayObject type="TextElement" tabstop="{$tabDepth}"
style="movestyle ">

<xsl:value-of select="@who" />

</Nite:DisplayObject>

NITE XMI. Toolkit !E
Options Help

E Smartkom games structure i

senice-encounter game
Systerm: Herzlich willkornmen beim SmartkKorm-Informationssystern . Ich bin Aladdin . Wie kann ich Ihnen helfen 7
Systern: Welcome to the SmattiKom information Senvice. My name Is Aladdin,g How can | el you?
te-Service game:
User: Welche Spielfilme laufen denn heute Abend im Femsehen ?
User Which feature flims are on T tonight?
System: Ichzeige Ihnen eine Ubersicht Ober die Filme | die heute Abend im Fernsehen laufen .
Systern: Here Is an overall view of the flms which are on TV tomight.
User: Daistnichts fr mich dabei.
User | do not fancy any of therm,
cinema-serice game
User: Dann rachtich doch llieber ing Kino gehen
User Then I would prefer to go to the cinema Instead
choose-filn garne:
Systerm: Hier sehen Sie eine Ubersicht dber das Programem der Heldelberger Kinos
Systern: Here s an overall view of what Is showing at the Heldelberger Cinerma
User: Denwitd ich gem sehen
Liser | would e fo see this
choose-cinerma game:
User: Wo kommt der ?
User Where is it showing?
System: Auf der Tafel sind die Kinos markiert, in denen der Film Marsattacks lauft
Systern. The cinermas which are showing the film Marsatiacks are marfed on the board.
make-reservation game:
User: Dawird ich gern reservieren
Liser {wouwld fite lo mate a reservalion
resolve-problem game
System: Eine Reserwierung istin diesem Kino nicht méglich
Systern. A reservalion in this cinema Js nol possinie,
User: Dann ein anderes Kino .
User. Then another cinema.
User: Das davieleicht
User. Thatis possibie.
choose-viewing game:
System: Aufder Ubersicht sehen Sie die Anfangszeiten des Films Marsattacks im Kino Europa .
Systern: You can see the start times of the filrn Marsattacks atthe Europa Cinerma marked on the overall view.
User: Dambchtich germ Reservieren
User: | would like to make 2 resenvation for this.

4]

Figure 1l - . MediumExample2.xd.The I nter nalFrame containsa TextAr ea which displaysthe
structur e of the smartkom data using indentations. Thetranslation of each utteranceisdisplayed
under thedatain red italic style.

Medium Example 3 — Structured Datain Trees

Trees can also be used to display hierarchical structured data. Medium Example 3
shows how to display the dialogue game structure of the Smartkom datain a Tree.
The output of this stylesheet is show in Figure 12. The Tree uses custom icons. Thisis
specified asfollows:

<Nite:DisplayObject type="1 I €e" Expandedlmagez"mi nus.gif " CoIIapsedImagez"p| us.gif "
Openlmage="" Closedlmage="">

The expanded and collapsed icons are used to indicate whether tree nodes are hiding
more nodes within them, or whether they are fully expanded. In this case, no open or
closed images are specified.

Recursive templates are used to popul ate the Tree so that the structure of the Tree
mirrors the structure of the dialogue games in the xml data. The game template
recursively creates a TreeNode for every dialogue game labeled with the game type.
The utterance template creates leaf nodes in the tree with Labels displaying wordsin
the utterance.

4 EHiENha- SRR G pETE
— aksng e
= lzar Asechong:
= Do

Figure12 - A Treeon an Internal Frame. Thetreerepresentsthe structure of the smartkom
dialogue data. The wor ds uttered by system and user areleaf nodes. Theiconsfor thetree have
been customised.

Medium Example 4 — Trees containing Grid Panes

Medium Example 4 shows how to show structured datain away which gives an
overview of the structure of the data as well as detailed information (see Figure 13).
Trees are used to illustrate the structure of the dialogue moves in the Smartkom data
while GridPanes are used to show details of each utterance, including parts of speech
tags and atrandation. Thisis achieved in asimilar way to the previous example
(Medium Example 3 — Structured Data in Trees), except that in the utterance
template, the leaf TreeNodes contain GridPanes. The GridPanes are specified in the
same way as Medium Example 1 —GridPanel for parts of speech and trandation.

POTE TNL Tosksn 98)] 5|
Opins g
s
- mires = i = ; = ; = ; = ; = ; = ; o ; S
-

BTG BT L LTI [T
Gypziam: offarzendce)
e 0 i e B D Sirammn-iomm atonsssstamieh o Al WE | kann feh Inmsrineran

WRAME [0 e Smat<nn inimmaion Seraca. ky name B Alading How can | nelp sou?

b m i g
Lhar (reqemat b sarvionl
e L S e T 0 ATerec s nn s e Al e el FRmat@n
Wrdich e aire films ara on T tonkghi?
Sreteme [pemehebl
Ich. [aeige knen dnellbersichi Der |(die Fiimeols heutes Sl m I ernee henlau'ery
Here is ari overall vew of e fims which ar= on T4 bonight

— LT [(fiBeh b). ;
O st [nichesifir [mich | dabed

| 00 it Tarcy amy of them
cinBrma- merics gane
+ Lkar (e aeaheineea- s et
chpars-in game
SyTlarr: fznra-ran-fim-e;
HIE SENBIESEe e i 0 LT | ias Procrsmm, der) Heick Denper kino &

||'lEIE" 15 8N (aral viow Of whal i slowing 2 iNe Hadebener Cirema
4 Lirer choosenim)
4 choamm-cirems gama
+ ah-r arvalion [ans
+ chasieg pame

Figure 13 - A Treecontaining GridPanels asleaf nodes. Thisallows both a view onto the
sructur e of thedialogue aswell asdetailed infor mation each utterance, including parts of
speech.

5. Using the Time Highlighting Feature

NITE NXT enables the end user to synchronize a video or audio track with atextual
transcription . When the user clicks on the “ Synchronize to text” checkbox on the
video or audio window (see Figure 14), text in the information display which matches
the current time on the video will be highlighted. The green highlighter moves
through the information display as the video advances. To achieve this, the stylesheet
must specify start and end times for display objects which should be synchronised
with the clock. The next sections illustrate how this can be done using the Smartkom
and Maptask corpora.

Timing with the Smartkom Data

The Smartkom data is annotated for time at an utterance level. This means that
sentences rather than individual words have associated timing information.

In Time Example 1, the datais displayed in a GridPane, using similar code to
Medium Example 1 —GridPanel for parts of speech and tranglation. However, the
labels which display the German words are a special type of label — TimedL abels.
TimedL abels work in the same way as Labels except they have additional attributes:
start and end, the start and end times of the time scope of this display object. Each
TimedLabel within a GridPanel for an utterance uses the start and end time of the
utterance so that they are all highlighted smultaneously. Neither the parts of speech
tags nor the trandation use TimedL abels because these are additional pieces of
annotation information which are not aligned to the video signal. Note that the

GridPane and the GridPaneEntries do not contain timing information; this is delegated
to the TimedL abels contained within them.

| VT AL Toskin LoE|

RS TERre | U R PR
) '_'u'zu_z |rewn (g8 | emrnr
WER FRER AT 2]
Here dg an 0veral view of e Tine which ans on T+ inight.
i

1351
| R

Trean | woLid prefir io g0 1o B cinema instaan

HiEr 1ENEN =13 Ere
i | |PEER ART
HETE 15 an ovErE vew of what 11 shawing 2t the HEdeberger Cirema

Fard
:Mﬂ

i =
VAFT ART
ACMY A0 R OEL L B,

Figure 14 - TimeExamplel.xd. A GridPane showing smartkom data. The utterance currently
spoken on thevideoishighlighted in green in the GridPane.

Figure 15 shows how timing information can be displayed on Trees using
TimeExample2. Leaf nodes within time scope are highlighted in green. The tree nodes
collapse automatically to show child nodes within time scope. Thisis accomplished
simply by altering the Medium Example 3 — Structured Data in Trees stylesheet so
that is uses TimedL abels rather than Labels as leaf nodes.

= - pmvice pameE
— s (TR B i g

Figure 15 - TimeExample2.xd. The smartkom data represented in tree form with the utterance
currently spoken on thevideo highlighted in green.

TimeExample3 illustrates how the Medium Example 4 — Trees containing Grid Panes
stylesheet can be adapted to denote time, as shown in Figure 16. Once again, thisis
accomplished by changing the Labels within the GridPanel Entries to TimedL abels.

[SaTE AL Formin |

i A 0 BT unker game
— Gyshenn | DN AL

| T) F P RAA TR PRER LR TS P
JFEl Cone [e SN0 INTONTeEion Serdace. by name |5 Aandn. Ho t3n ek

& fesenice pame
o+ BRI A E G T
+ i e

[
i o o o 1 ST T

Figure 16 - TimeExample3.xd. The smartkom datarepresented in GridPanesas TreeNodes. The
currently spoken utteranceishighlighted in the appropriatetop row of the GridPane element in
green.

TimeExample4 shows how to specify that TextElements within a TextArea should be
highlighted when in time scope. Thisis achieved by adapting the stylesheet Medium

Example 2 — Indentation in TextAreas so that the TextElements specify start and end
attributes representing when the elements come in and out of time scope.

| et il Foskn =oE|

SRR O LIRS &
syens Herzich wiEkDmmen beim Bmarkan-mormeagionasasiam (ch bn Asddn ¥ e karn ith Ihren et

Syt HRkoms oA STTasom (lnoainn Satice. My nerod i ko, Fow cao By
P serAcegame
Ui Wedche EnbaSime [sren dsnn teuts Abend i Femeshen 7
st VN Kt ANT 210 on #
Byrim

rdm Fime , de b el Ahend |0 Femsens n i
ABm bt e o TV koot

& P i QO E R e D S I P
Lot TN 1WA IR I [N CLERATLY e

Symlen R ki an el e ofuhal n abouing o the
1= Daanwiind ich paim 3 efan
@

Lizsr Wi b i bommng 7
re: Bl or Tadl eind i Minoe markosrt, in dersnder Fim dsrenfacks Bl
Spstar The choouoe shich end chorecng e oo bAersaias ks as marvad ao i

rronke-rem e fan mpme
i Dha wnaved | peam eea ef eren
A M A wEEvANLD

Syslime BNk Rt [BEin s D i mbgich
Snier 1 EREALARLY AL CIDRTLE A not passile
®in snderax Kina

Uperse; Dws o wieded chi
Vear Tha!le peaciis
L o G- A [ST
Sysiner Axl dar Uhereich] gehen Sis de Anfan greeden dee Fims
Vinrestnrke im Ken Eereps
Sl WAL S SO0 N SEeT 0D D SO0 Mardaliar s &t
Eunare Cinems moariad on i sl view
Ib: O rebchiich gem Raesrvisran
SR AL 100 TR & ST BOF RS
[[11, Il

Figure 17 - TimeExampled.xd. The smartkom data isdisplayed asindented text on a TextArea.
The TextElementsaretimealigned, so that the transcription is highlighted when the
corresponding bit on thevideo isreached.

Timing with the Map Task Data

The MapTask corpus has more detailed timing information than the Smartkom data.
Each word in the Maptask is atimed unit with start and end times specified. This
makes it possible to sychnronize the transcription display to the audio/video signa
more accurately, as shown in Figure 18, Figure 19 and Figure 20. Stylesheets
MapTaskTimeExamplel, MapTaskTimeExample2 and MapTaskTimeExample3
illustrate how to achieve this.

ey
[ruTwe e starting bop 1L
— G g
— Tod pssr
Jight yofee g = dismard mine |
— ghar

|ty drop A siraight down o e S of |

Ribwern: -
[right thef's mkary right clary ngre |

L R Rk L N

Figure 18 - MapTaskTimeExamplel.xd. A tree containing GridPanelsto show the map task
dialogue structure. The GridPanels are used to arrange the timed units horizontally next to each
other to make them easier toread. The green highlight denotesthetranscription

e
— TDbrWEr [AEhToW K paT
-y

— pEr (Em:
& chie

iy

» dLsghi
dosn
aln
uihy
a s
w
+ Rl (aokorss B]

Figure 19 - MapTaskTimeExample2.xs A Tree showing the map task games and moves. The
green highlighted leaf nodeisthetranscript of the currently spoken word on the audio track.

[SaTE AL T TOE|

akwy
[paud vea e aia in g iop | ed
align game
311 rightymu'vs gl x d bmond mins
1% e 3 QT Dred e
akay drop o skaigh dawndahe ' of
Agnt ima.qn: Dk A phE
e ok
aplmingama
anr D i very A
£ dmp fiop s ght siaipht dosn He side ofhe dmondming o he " of dismond mire
ipe akwp
1 gy
checkgams
et balkra
L Bt
and hanuTegoing o oo Aght drrwing & e s eme sl d smond mines
n pan's
el TR
hiold ar voddan my pan's n ok ohino Bs wikmg
akry U tegoinp i draw youa grinpio und erine dsmerd mire
undaine & ight

heckgams

ma right undarine & slorg totha 8"
T T T S G T T A T e (e
of dbsmond
mplan game
I i o] WO ey vl
algn game
Ak
g
inptn] game
£ right and condinue f line urdl e e s dncly Below the W of higheeivisspaint
chick gans
of highesiviramaint
Hght
chickgams
=k o [ves el il A e ess] B o o ghvkheand o e poing B b e righl o] e verg fom
alina going

Figure 20 - MapTaskTimeExample3.xd A TextArea using indentationsto show the structure of
thedialogue. The Text Elementsare aligned to time, so the grey highlight denctesthat the audio
track hasreached an utterance corresponding to that word in thetranscription

6. Specifying actions

Introduction

In addition to specifying the layout of NXT interfaces which allow a user to view the
data, it is possible to specify edits or actions which the user can perform on the NXT
interface. These allow the user to edit the underlying xml data. At the current time, we
recommend that stylesheets with action specifications should be used only with small
datasets as performance problems inherent in the stylesheet processing approach make
action execution very slow. At present, stylesheets with actions can be used on small
data sets, or as a prototyping tool. We suggest that users who work with large datasets
should use the NITE display objects library to write java programs for displaying and
editing data. The java classes for handling editing actions on the XML are used by
NXT to create an interface from the xgl specification, and so this document also
serves as a useful introduction to the java functionality.

There are five actions which can be performed on the underlying xml data: change
textual content of an element; change attribute value in an element; add a child to an
element; add a sibling to an element; and delete an element. These actions can be
performed on either simple (JDOM) or standoff (NOM) xml files. Exanples of each
of these actions in the smple xml case will be discussed in the following sections.

There are many ways in which a user could indicate which action should be
performed on each element. The main assumption in the user interface design is that
the user must select an element by clicking on a representation of it on the user
interface with the left mouse button. Once an element is selected the user can invoke

an action by right clicking with the mouse or pressing a key. Some actions can be
performed on the underlying dataimmediately. Others require further input from the
user such as anew value for an attribute, or new textual content. The NITE display
library provides various basic means of eliciting this information from the user, by
pop-up menus and dialogue boxes. We intend to extend this library in the future.

Changing textual content in an element

The simplest example of editing xml from the interfaceisin ActionDemol.xsl. Note
that many of the examples for actions use the animals.xml datafile for the sake of
simplicity. The stylesheet specifies an interface which displays each of the animals
from the datain alist with the textual content of each animal element in brackets after
the animal name. When the user selects alist entry and presses the “change element
content” button (see Figure 21), a dialogue pops up inviting the user to type in a new
value of the textual content of the element. Once the user presses “Ok”, the editing
action is executed, the underlying xml is changed, and the whole interface
specification is re-processed and redisplayed.

mrlgamenng-;u"
Patar [Has aloud squsak §
Rl [Meges inthe e STemoan)
Fealia { Acthve inthe moming |
Alrad | Also anjoys Ty fcking)
Blan, keen If.'iiidl!r Text
Esma{ Escapssfrom tes

Bt [Canhe fix ity Yas hog @' Paric it b Uit s s

T)

| Change slement conlen |

Figure 21 ActionDemol. Changetextual content

Thisis achieved asfollows. Firstly, the action must be specified in the xdl file after
the <nite:Root> element, and before the <nite:DisplayObject>s. In this example the
action specification looks like this:
- <nite:Root>
- <!-- definition of user input actions -->

- <nite:Actions>

- <I-- The action which causes the change textual content option pane to appear -->

<nite:Action id="Action1" description="Change textual content for xml element"
dialoguebox="ChangeTextualContentOptionPane" source="List1" />

</nite:Actions>

The only action for thisdisplay hastheid “Action1”. Theid field isrequired to
specify which action should be associated with which display object. The
“description” tag is used to explain what the action is intended for. The “dial oguebox”
tag specifies which method of getting user input to compl ete the action will be used.
Inthis case, asthe user hasto type in new text for the textual content of an element,
the ChangeT extual ContentOptionPane is used. This display object from the library
produces the dialogue box shown in Figure 21. The “source’ tag refersto the ID of a
display component in which the user will have selected the element for editing. In this
case, it refersto Listl.

Having specified what should happen when Actionl is executed, we also need to
specify how Actionl should be triggered. Thisis done by specifying an action
reference within the display object which should trigger the action to be executed. In
this example, the action happens when the button with the id of “Buttonl” is pressed,
as shown below. The nite:ActionReference specifies an actionlD which is*Actionl”,
the ID of the action we set up above.

- <nite:DisplayObject id="Buttonl" type="Button" FontStyle="Italic" Font="Arial" FontSize="16"
tooltip="Button">

- <l--
specifies that the action which is triggered by this button has the ID Actionl

--> <nite:ActionReference actionID="Actionl1" />

- <l--
The content to be displayed on the button

_—>
Change element content

</nite:DisplayObject>

Changethe value of an attributein an element

The user often needs to change the value of an attribute of an xml element. Example
stylesheets ActionDemo2.xsl , ActionDemo3.xsl and ActionDemo4.xd illustrate three
different interfaces for carrying out this action.

Figure 22 illustrates the interface which is built from the specification in
ActionDemo2.xdl. Each animal element is displayed on the list with the animal name
followed by the value of the “Habitat” attribute in brackets. The user has clicked on
the “Change Habitat” button which has triggered the dialogue box to appear. The
dialogue box allows the user to enter a new value for the habitat attribute on the
selected animal element. Once the user clicks on “enter”, the xml is updated and the
interface is redisplayed.

Ficeckey | Ivas in Dustins |
Reabecca {lives inwWoocdiand |
Penalops | Inves in Rockies)
* Peterd esin Boukdsr]
Rufus ¢ lives in Himalsgas |
Faka | iwes in Edinbungh Zoo |
BFrad § Ives inpend)
Alan{ Inses in The tree outside curwandow)
Esma | bvas in Plurnbing in cela FIPCEEN 0 TR T
Biab [Ives in Fara 5
{ @ hhﬂuﬁr"dﬁiﬁnuﬂu'—ﬂ

[Coaeod | peter | | caseat

Change “Hatilst® afbute valia

Figure 22 ActionDemo2. Changing an attribute value using an option pane

The action is specified in asimilar way to the change textual content action in the
previous example. The action specification in the xdl is shown below:

<nite:Action id="ACtiOn1" description="Change attribute value for xml element-
dialoguebox:"ChaHQEAttl'i buteval ueOpti onPane" source="List1" attribute="Habitat" />

This time the “ dialoguebox” tag specifies a ChangeAttributeV al ueOptionPane display
object which isshown in Figure 22. There is an additional tag “attribute” whichis
used to specify which of the attributes in an element should edited. In this case, the
attribute “habitat” can be edited. Note that this assumes that a component will display
elements of the sametype, or at least that al elements which might be displayed in
the component share an attribute specified by thistag. If this assumption does not
hold, another of the display objects from the library will be more suitable. The action
reference is specified in the same way as in the change textual content example.

Figure 23 shows another way to change an attribute value of an element. This method
would be suitable in cases where the attribute values should be constrained rather than
freely typed. Thelist has an entry for every species in the animals xml file, and the
covering of the speciesis denoted inside brackets. The user selects a specieswith a
left mouse click. Once an element is selected, aright mouse click will trigger a popup
menu which allows the user to select anew value for the “Covering” attribute: one of
fur, feathers, or scales. Once the right mouse button is released, the value of the
selected item on the popup menu will be used to update the underlying xml and the
interface will be refreshed.

NITE XML Teolkil

AsianFishing Cak | has a c
Aandvark [has o Qoverning of Fur]
Emerald Tree Boa | has a cowsring of Scaks |

Eird of Paradics | hes @ covging of Feathers)

Figure 23 Change attribute value of an element using a pop-up menu

The specification for the interface in Figure 23 isin ActionDemo3.xdl. Thistime the
type of dialogue box used is a“ ChangeAttributeValuePopUp” which produces a
popup menu. The interesting section of the stylesheet is the specification of
nite:PopupContexts. These are used to populate the different options which will
appear on the popup menu. The “attribute” tag species that the attribute which will be
altered has the name “Covering”. The values for tags “optionl”, “option2” and
“option3” will appear on the popup menu. Note that any number of options can be
specified for these popup menus — the tags should take the form “optionN”, where N
isthe position in the list where this option should appear.

- <nite:Action id="Action1" description="Change attribute value for xml element”
dialoguebox="ChangeAttributeValuePopUp" source="List1">

- <nite:PopupContexts>
<nite:PopupContext attribute="Covering" option1="Fur" option2="Feathers" option3="Scales" />
</nite:PopupContexts>

</nite:Action>
This time the action is triggered by the xsl code shown below:
<nite:ActionReference actionib="Actionl1- keybinding:"right_mouse" />

Aswell as specifying which actionlD is associated with the component, a keybinding
isalso specified. The value “right_mouse” indicates that the action should be
triggered by aright mouse click. “Left_mouse” would aso be valid. The keybinding
tag could alternatively be used to specify a keyboard key which triggers an action —
thiswill be discussed further in the DeleteElement example.

Naturally, the actions can be used with components other than lists. Figure 24 shows
an interface where data is displayed on atext area, and the user can edit the value of
attributes using a popup menu. The animal element from the animal data are displayed
with their names in red and their habitat in blue. When the user selects an element and
right clicks on it, a popup menu appears. The options in the popup menu depend on
which part of the text area is selected. When a habitat is selected, as shown in the
figure, the popup menu options are related to habitat — Cannonmills, Leith and New
Town (areas of Edinburgh). If the user had clicked on an animal’ s name, the popup
menu would have contained Ringo, John, Paul and George. When the user releases
the right mouse button, the xml is updated and the interface is redisplayed.

NITE XML Teolkil

el Lo
Anmal Rochy
Hakdiad Dusdiim
Animal: Fetecy
Hektad: Wondand
Brimad: Fersines)
Hpbitst RocHee

Eoulder
Hifnalapas

Evdnbingh Zon

pord

e

(&l inkaingh

B Sk [i

Figure 24 Change attribute values using popup menuson atext area

This example interface is specified in the stylesheet ActionDemo4.xsl. The code
which specifies the action is below:

<nite:Action id="Actionl1" description="Change attribute value for xml element"
dialoguebox="ChangeAttributeValuePopUp" source="TextAreal">

- <nite:PopupContexts>

<nite:PopupContext attribute="name" option1="Paul" option2="John" option3="Ringo"
option4="George" />

<nite:PopupContext attribute="Habitat" option1="Canonmills" option2="Leith" option3="New Town"
/>

</nite:PopupContexts>
</nite:Action>
It specifies that the source for selected elements which need edited is TextAreal.

There are two popup contexts in the action, because the popup menu will display
different actions depending on what is selected in the text area. If aname attribute is

selected, the options should be Paul, John, Ringo or George. If ahabitat attributeis
selected, the popup options are Canonmills, Leith and NewTown.

The context sensitive menu population relies on the text elements knowing which
attribute of an element which they are displaying. The same element may be
represented in the display by many different objects. In this case, many text el ements
could display different attributes of the same element. Thisis accomplished by the
“displayAttribute’ tag on the text elements, as shown below:

<nite:DisplayObject type="TextElement" tabstop="{$tabDepth + 1}" style="habitatstyle"
displayAttribute="Habitat">
<xsl:value-of select="@Habitat" />

</nite:DisplayObject>

This specifies that the text element should be indented by one tab stop, that it should
be displayed in the habitat text style, and that the attribute of the element displayed by
the text is“Habitat”. The text itself is the value of the Habitat attribute.

Add achild to an e ement

Although it is useful to change attribute values of xml elements, the user might also
want to edit the structure of the xml document by adding children. Figure 25 shows an
example interface where the user can create a new child for an element. The species,
animals and young from the animal data are displayed in atree structure. The user has
selected the element Rebecca (thisisindicated by the red text colour on the selected
node). A right mouse click has triggered the dialogue box for creating a new child to
add to the selected element. As Rebecca already has the child Baby, the dialogue box
has been populated with the attributes from this element. As Baby has the element
name “young”, the default value for the new child’s element nameisaso “young”. It
is also assumed that the new child will need the attributes name, 1D and habitat. If the
user wanted to add a child to an element with only one child, the dialogue box would
have been populated with the attribute names and element name from the parent,
Rebecca. We intend to create further library objects for cases where these
assumptions do not hold. Once the user has typed in the values for the new child, she
can press “Ok”, the xml will be updated, and the stylesheet will be redisplayed.

METL XML Toalkit

e LT

+ msinFishing ol
+ Aailank

+ Ervarald Trae Boa
+ Eird of Faradse

'ﬂ a8 new chindio Rebecca

Pl aiilnr in andilens vl Hain of B e L || | .
i foung | e | cosent |

ot i bt

[Hezt

e

Figure 25 Add a new child to an element

Thisinterface is specified in the stylesheet ActionDemo7.xsl. The code for specifying
the action is shown below:

<nite:Action id="Actionl- description="Add child to xml element -
dialoguebox:"AddChi|dopti0npane" source="Treel" />

The dialoguebox is AddChildOptionPane, which appears as shown in Figure 25. The
action reference is specified as follows:

<nite:ActionReference actionip="Actionl- keybinding ="right_mouse" />

Each tree node displays an element of data and specifies which attribute of the data it
represents on screen, as follows. The IDs for the displayobjects are generated from the
element names.

<nite:DisplayObject type="TreeNode" id="TreeNode{@name}">
- <nite:DisplayObject type="Label" id="Label{@name}" displayAttribute="name">
<xsl:value-of select="@name" />

</nite:DisplayObject>

Add sibling to an element

There are cases where it might be more convenient for the user to add asibling to an
element, rather than to add a new child to the parent of that element. This can be
achieved with the addSibling action. An example of this action is shown in Figure 26.
The user has selected the element “Bob” and has right clicked with the mouse to
trigger the addSibling action. The add new sibling dialogue box allows the user to
enter attribute values and element name. The attribute names are copies of the

attributes in the sdlected element, and the el ement name va ue defaults to the element
name of the selected element. When the user clicks on the OK button, the xml is
updated, and the interface is redisplayed.

4 Ermerald Tren Boox
— Bind of Parmdae
-1

Create new sibling

g vl e il 10 B0
Pieasn aries 11 T ilete vales Waing of Eiemes [srimal | EH::J jrp— |

Hasan
low__

e

Figure 26 Add a sibling to an element using atreerepresentation

The stylesheet ActionDemo8.xsl produces the interface shown in Figure 26. The
stylesheet isidentical to ActionDemao7.xsl, except for the specification of the
addSiblingOptionPane instead of the addChildOptionPane:

<nite:Action id="Actionl1" description="Add sibling to xml element"”
dialoguebox="AddSiblingOptionPane" source="Treel" />

Delete an e ement from the xml

Users may aso wish to delete elements from the underlying data. Thereis no
screenshot example because it is difficult to depict! An example delete element
specification can be found in ActionDem09.xdl. In this example, the animals from the
animal data are represented in atree view, asin the previous example. When the user
selects an element and presses the delete key, the selected element is deleted from the
xml, and the interface is redisplayed.

The delete element action is specified with the following xdl:

<nite:Action id="Actionl1" description="Delete an xml element" dialoguebox="DeleteElement"”
source="Treel" />

The “dialoguebox” tag is set to DeleteElement. This means that when the action is
triggered, the DeleteElement action should be carried out on the selected element
(dialoguebox is possibly not the best name for this tag). The action reference is
specified as shown below. This time the keybinding, the interface input which triggers
the action, is set to “Delete”. Thisrefersto the delete key on the keyboard. The

keybinding tag can be used with any of the other actions and option panes. The key
can be set to any keyboard key, such as“F2”, “Space’, “Shift”, or “A” (see
http://java.sun.com/products/jdk/1.2/docs/api/javalawt/event/K eyEvent.html#getK ey
ModifiersText(int)).

<nite:ActionReference actionID="Actionl" keybinding="Delete" />

7. Future Work

The NITE display library is not yet complete. We intend to add further library
components, which will mostly be used for actions. Here are some additional
stylesheet examples which we intend to make:

Example interface with actions for performing all five edits on the xml.

Example interface which allows the user to alter atree structure using cut
and paste to add children to elements.

Example interface which allows structural changes on the xml(add child,
add sibling and deleteElement) on atext area.

Example interface which allows add xml edits to be carried out with agrid
panel.

8. Quick Reference Guide

Example Type Swing peer L egal Parent Legal Children Parameters

Internal Frame Jinternal Frame None Panel ImagePath
ScrollPane background
SplitPane
TabbedPane
Label
TimedLabel
List

Button
Checkbox
GridPane
TextArea

Tree

NTTE XNIL Tealld

Panel JPanel Internal Frame Panel background
Panel Internal Frame
ScrollPane ScrollPane
SplitPane SplitPane
TabbedPane
Label
TimedLabel
List

Button

Checkbox
GridPane
TextArea
Tree
SITE XML Taalidr TabbedPane JTabbedPane Internal Frame Panel background
r Panel
: ScrollPane

SplitPane

ScrollPane

JScrollPane

Internal Frame
Panel

Panel
Internal Frame
ScrollPane
SplitPane
TabbedPane
Label
TimedLabel
List

Button
Checkbox
GridPane
TextArea
Tree

SplitPane JSplitPane Internal Frame Panel Background
Panel Restriction: only split
Seollpme | Lo peneis Ty be
Ao pane
Note: The green arrow is pointing to the split pane
divider (split), which is vertical
T Label JLabel Any None background
/ textcolour
| FontStyle
A test labal Font
FontSize
ToolTip

ImagePath

ed pane example

Welcome to the Smartkom Information Service. My

-| TimedL abel

NTimedL abel

Any

None

background
textcolour
FontStyle
Font
FontSize
ToolTip
ImagePath
Start

end

|]]E | A fest checkbox

CheckBox

JCheckBox

Any

None

Background
textcolour
FontStyle
Font
FontSize

ToolTip

e

List

JList

Any

Label

-
rr B el g e T Y gl B SRR ML (T b B bl
e R PAT M LA SRR s T P

e

LR I L L
il i i
' S L kLt 0 A o] e b i

LE—— P— ——
o Pl] ket i
Rt b
b berd
fem——

e i
Bl Tae e Bl Wbt i | e [W i e R
= lrg e e s e S e p e 1 A g e e

TextArea

NTextArea (
extension of
JTextPane)

Internal Frame
Panel

TextElement
FontStyle

Specifies how a piece of text should be printed on
screen, not visible by itself

FontStyle

Style

TextArea

None

Name
textcolour
FontSize

Font

FontStyle
= COEr replyl Twe got & diamond mine TextElement N/A TextArea None style
followeer (acknowledoge): okay
aiver finstruct okay drop s-- straight down to the "d" of start
followeer (acknowledoge): right that's akay right okay right
giver (acknowledge); okay end
explain game:
piver fevnlaint this is wer difficult
givar finstructy drop drop straight straight down the side of the
followeer (acknowledoge): okay
[follower (acknowledae): okay
The text highlighted in yellow isasingle TextElement
' Tree NTree (extensionof | Panel TreeNode Expandedimag
JTree e
) ScrollPane
Collapsedim
Internal Frame e o
; 1y WO Openedimage
Closedimage

¥

ety gt b e

B rramra vt d v a

"g‘q i

Dialogue Structure TreeNode NTreeNode Tree TreeNode start
— instruct game: (extension of
— giver (ready); DefaultTreeNode) TreeNode L abel end
- TimedLabel
gner {instruct); .
® paul GridPane
® e're
® starting
+ 3
+ giver (instruct):
+ follower facknowledge):
+ giver (acknowledge);
prmteersemers GridPanel A JPanel using the ScrollPane GridPanel Entry Columns
Pruits ayoutManager Internal Frame border
Panel background

& chamy labe|

G 4 peach (aber

GridPanel Entry

N/A

GridPanel

Label
TimedLabel

RowSpan
ColSpan
position

